×

On stochastic linear systems with zonotopic support sets. (English) Zbl 1430.93201

Summary: This paper analyzes stochastic linear discrete-time processes, whose process noise sequence consists of independent and uniformly distributed random variables on given zonotopes. We propose a cumulant-based approach for approximating both the transient and limit distributions of the associated state sequence. The method relies on a novel class of \(k\)-symmetric Lyapunov equations, which are used to construct explicit expressions for the cumulants. The state distribution is recovered via a generalized Gram-Charlier expansion with respect to products of a multivariate variant of Wigner’s semicircle distribution using Chebyshev polynomials of the second kind. This expansion converges uniformly, under surprisingly mild conditions, to the exact state distribution of the system. A robust feedback control synthesis problem is used to illustrate the proposed approach.

MSC:

93E03 Stochastic systems in control theory (general)
93B35 Sensitivity (robustness)
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Aubin, J.-P., Viability theory (1991), Birkhäuser Boston · Zbl 0755.93003
[2] Berkowitz, S.; Garner, F., The calculation of multidimensional Hermite polynomials and Gram-Charlier coefficients, Mathematics of Computation, 24, 11, 537-545 (1970) · Zbl 0216.49301
[3] Bertsekas, D. P.; Shreve, S., Stochastic optimal control: the discrete-time case (1978), Academic Press · Zbl 0471.93002
[4] Bitsoris, G., On the positive invariance of polyhedral sets for discrete-time systems, Systems & Control Letters, 11, 3, 243-248 (1988) · Zbl 0661.93045
[5] Bittanti, S.; Colaneri, P.; De Nicolao, G., The periodic Riccati equation, (Bittani, S.; Laub, A. J.; Willems, J. C., The Riccati equation (1991), Springer Verlag), 127-162 · Zbl 0734.34004
[6] Blanchini, F., Set invariance in control, Automatica, 35, 11, 1747-1767 (1999) · Zbl 0935.93005
[7] Blanchini, F.; Miani, S., Set-theoretic methods in control (2008), Springer, Birkhäuser · Zbl 1140.93001
[8] Boyd, S.; El-Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory (vol. 15) (2004), SIAM
[9] Busam, R.; Freitag, E., Complex analysis (2009), Springer · Zbl 1167.30001
[10] Caflisch, R. E., Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, 7, 1-49 (1998) · Zbl 0949.65003
[11] Caines, P. E., Linear stochastic systems (vol. 77) (1988), John Wiley NYC · Zbl 0658.93003
[12] Chachuat, B.; Houska, B.; Paulen, R.; Perić, N.; Rajyaguru, J.; Villanueva, M. E., Set-theoretic approaches in analysis, estimation and control of nonlinear systems, IFAC-PapersOnLine, 48, 8, 981-995 (2015)
[13] Cohen, L., Generalization of the Gram-Charlier/Edgeworth series and application to time-frequency analysis, Multidimensional Systems and Signal Processing, 9, 4, 363-372 (1998) · Zbl 0921.60013
[14] Dragan, V.; Morozan, T.; Stoica, A.-M., Mathematical methods in robust control of discrete-time linear stochastic systems (2010), Springer · Zbl 1183.93001
[15] Hald, A., The early history of the cumulants and the Gram-Charlier series, International Statistical Review, 68, 2, 137-153 (2000) · Zbl 1107.01304
[16] Hald, A., On the history of series expansions of frequency functions and sampling distributions (vol. 49), 1873-1944 (2002), Det Kongelige Danske Videnskabernes Selskab
[17] Holmquist, B., The direct product permuting matrices, Linear and Multilinear Algebra, 17, 2, 117-141 (1985) · Zbl 0566.15012
[18] Kalman, R. E., A new approach to linear filtering and prediction problems, Transactions of the ASME-Journal of Basic Engineering, 82, 1, 35-45 (1960)
[19] Kendall, M. G.; Stuart, A., The advanced theory of statistics (vol. 3) (1969), Charles Griffin · Zbl 0223.62001
[20] Klartag, B., A central limit theorem for convex sets, Inventiones Mathematicae, 168, 1, 91-131 (2007) · Zbl 1144.60021
[21] Kolmanovsky, I.; Gilbert, E. G., Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering: Theory, Method and Applications, 4, 4, 317-367 (1998) · Zbl 0923.93005
[22] Kurzhanskiy, A. A.; Varaiya, P., Ellipsoidal techniques for reachability analysis of discrete-time linear systems, IEEE Transactions on Automatic Control, 52, 1, 26-38 (2007) · Zbl 1366.93039
[23] Loh, W.-L., On latin hypercube sampling, The Annals of Statistics, 24, 5, 2058-2080 (1996) · Zbl 0867.62005
[24] Mason, J. C.; Handscomb, D. C., Chebyshev polynomials (2002), Chapman & Hall/CRC · Zbl 1015.33001
[25] Nagy, Z.; Braatz, R. D., Distributional uncertainty analysis using power series and polynomial chaos expansions, Journal of Process Control, 17, 3, 229-240 (2007)
[26] Noschese, S.; Ricci, P. E., Differentiation of multivariable composite functions and bell polynomials, Journal of Computational Analysis and Applications, 5, 3, 333-340 (2003) · Zbl 1090.26006
[27] Rakovic, S. V.; Kerrigan, E. C.; Kouramas, K. I.; Mayne, D. Q., Invariant approximations of the minimal robust positively invariant set, IEEE Transactions on Automatic Control, 50, 3, 406-410 (2005) · Zbl 1365.93122
[28] Schott, J. R., Kronecker product permutation matrices and their application to moment matrices of the normal distribution, Journal of Multivariate Analysis, 87, 1, 177-190 (2003) · Zbl 1030.62043
[29] Stein, M., Large sample properties of simulations using latin hypercube sampling, Technometrics, 29, 2, 143-151 (1987) · Zbl 0627.62010
[30] Stengel, R. F., Optimal control and estimation (1994), Dover Publications · Zbl 0854.93001
[31] Trefethen, L. N., Approximation theory and approximation practice (vol. 128) (2013), SIAM · Zbl 1264.41001
[32] Villanueva, M. E.; Houska, B.; Chachuat, B., Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs, Journal of Global Optimization, 62, 3, 575-613 (2015) · Zbl 1320.49013
[33] Withers, C. S.; Nadarajah, S., The dual multivariate Charlier and Edgeworth expansions, Statistics & Probability Letters, 87, 76-85 (2014) · Zbl 1331.62084
[34] Xiu, D., Numerical methods for stochastic computations: a spectral method approach (2010), Princeton University Press · Zbl 1210.65002
[35] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing, 24, 2, 619-644 (2002) · Zbl 1014.65004
[36] Zhang, D., Stochastic methods for flow in porous media: coping with uncertainties (2002), Academic Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.