×

Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method. (English) Zbl 1430.93096

Summary: In this study, the dynamic response and stability of two-degree-of-freedom vehicle system subjected to an external excitation force with quadratic and cubic nonlinearities simultaneous are researched, and the differential equations of motion are deduced by utilizing the mechanical constitutive relationship. The accuracy of the model and the efficiency of modified incremental harmonic balance method are compared and verified with literature and numerical simulation results. Then the parameter researches of the system are carried out to investigate the influences of the mass ratio, excitation amplitude and nonlinear stiffness ratio of tire on the nonlinear characteristics and steady-state responses by amplitude-frequency curves, which have different level of influences on the dynamic responses of the vehicle system. Depending on the different control parameters, the system displays rich and varied behaviors including the jump discontinuity, multiple solution properties, super-harmonic resonance and softening/hardening-type nonlinearity, which are attributed to the strong nonlinearity and dynamical coupling characteristics of the vehicle system. Besides, the two remarkable resonance peaks and different branching paths between steady-state solution and unsteady-state solution are observed. The contributions of this study can provide valuable information to optimize and control the vehicle system, and be helpful for knowing more about nonlinear dynamic behaviors and stability of the system.

MSC:

93C15 Control/observation systems governed by ordinary differential equations
70Q05 Control of mechanical systems
70E60 Robot dynamics and control of rigid bodies
Full Text: DOI

References:

[1] Yang, S.P., Lu, Y.J., Li, S.H.: An overview on vehicle dynamics. Int. J. Dyn. Control 1(4), 385-395 (2013) · doi:10.1007/s40435-013-0032-y
[2] Sheng, Y., Wu, G.Q.: Chaos research on vehicle nonlinear suspension system. Autom. Eng. 30(1), 57-60 (2008)
[3] Yang, S.P., Li, S.H., Lu, Y.J.: Investigation on dynamical interaction between a heavy vehicle and road pavement. Veh. Syst. Dyn. 48(8), 923-944 (2010) · doi:10.1080/00423110903243166
[4] Borowiec, M., Grzegorz, G.: Transition to chaos and escape phenomenon in two-degrees-of-freedom oscillator with a kinematic excitation. Nonlinear Dyn. 70(2), 1125-1133 (2012) · doi:10.1007/s11071-012-0518-8
[5] Litak, G., Borowiec, M., Ali, M., Saha, L.M., Friswell, M.I.: Pulsive feedback control of a quarter car model forced by a road profile. Chaos Soliton Fractals 33(5), 1672-1676 (2007) · doi:10.1016/j.chaos.2006.03.008
[6] Prabakar, R.S., Sujatha, C., Narayanan, S.: Response of a quarter car model with optimal magnetorheological damper parameters. J. Sound Vib. 332(9), 2191-2206 (2013) · doi:10.1016/j.jsv.2012.08.021
[7] Prabakar, R.S., Sujatha, C., Narayanan, S.: Response of a half-car model with optimal magnetorheological damper parameters. J. Vib. Control 22(3), 784-798 (2016) · doi:10.1177/1077546314532300
[8] Siewe, M.S.: Resonance, stability and period-doubling bifurcation of a quarter-car model excited by the road surface profile. Phys. Lett. 374(13-14), 1469-1476 (2010) · Zbl 1236.70026 · doi:10.1016/j.physleta.2010.01.043
[9] Wu, C., Wang, W.R., Xu, B.H., Li, X.L., Jiang, W.G.: Chaotic behavior of hysteretic suspension model excited by road surface profile. J. Zhejiang Univ. Eng. Sci. 45(7), 1259-1264 (2011)
[10] Papalukopoulos, C., Natsiavas, S.: Nonlinear biodynamics of passengers coupled with quarter car models. J. Sound Vib. 304(1-2), 50-71 (2007) · doi:10.1016/j.jsv.2007.01.042
[11] Naik, R.D., Singru, P.M.: Resonance, stability and chaotic vibration of a quarter-car vehicle model with time-delay feedback. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3397-3410 (2011) · Zbl 1336.70037 · doi:10.1016/j.cnsns.2010.11.006
[12] Jayachandran, R., Krishnapillai, S.: Modeling and optimization of passive and semi-active suspension systems for passenger cars to improve ride comfort and isolate engine vibration. J. Vib. Control 19(10), 1471-1479 (2012) · doi:10.1177/1077546312445199
[13] ElMadany, M.M.: Quadratic synthesis of active controls for a quarter-car model. J. Vib. Control 7(8), 1237-1252 (2001) · Zbl 1006.70516 · doi:10.1177/107754630100700806
[14] ElMadany, M.M.: Dynamic analysis of a slow-active suspension system based on a full car model. J. Vib. Control 17(1), 39-53 (2011) · Zbl 1271.70058 · doi:10.1177/1077546309352828
[15] Onat, C., Kucukdemiral, I.B., Sivrioglu, S., Yuksek, I., Cansever, G.: Lpv gain-scheduling controller design for a non-linear quarter-vehicle active suspension system. Trans. Inst. Meas. Control 31(1), 71-95 (2009) · doi:10.1177/0142331208090630
[16] Marzbanrad, J., Keshavarzi, A.: Chaotic vibrations of a nonlinear air suspension system under consecutive half sine speed bump. Indian J. Sci. Technol. 8(S3), 72-84 (2015) · doi:10.17485/ijst/2015/v8i1/52684
[17] Soong, M.F., Ramli, R., Mahadi, W.N.L.: Using gear mechanism in vehicle suspension as a method of altering suspension characteristic. J. Vib. Control 21(11), 2187-2199 (2015) · doi:10.1177/1077546313508298
[18] Liang, S., Li, C.G., Zhu, Q.: The influence of parameters of consecutive speed control humps on the chaotic vibration of a 2-DOF nonlinear vehicle model. J. Vibroeng. 13(3), 406-413 (2011)
[19] Liu, F., Liang, S., Zhu, Q., Xiong, Q.Y.: Effects of the consecutive speed humps on chaotic vibration of a nonlinear vehicle model. ICIC Express Lett. 4(5), 1657-1664 (2010)
[20] Łuczko, J., Ferdek, U.: Non-linear analysis of a quarter-car model with stroke-dependent twin-tube shock absorber. Mech. Syst. Signal Process. 115, 450-468 (2019) · doi:10.1016/j.ymssp.2018.06.008
[21] Rajalingham, C., Rakheja, S.: Influence of suspension damper asymmetry on vehicle vibration response to ground excitation. J. Sound Vib. 266(5), 1117-1129 (2003) · doi:10.1016/S0022-460X(03)00054-3
[22] Demir, O., Keskin, I., Cetin, S.: Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach. Nonlinear Dyn. 67(3), 2139-2151 (2012) · doi:10.1007/s11071-011-0135-y
[23] Azimi, H., Galal, K., Pekau, O.A.: A numerical element for vehicle-bridge interaction analysis of vehicles experiencing sudden deceleration. Eng. Struct. 49, 792-805 (2013) · doi:10.1016/j.engstruct.2012.12.031
[24] Sezgin, A., Arslan, Y.Z.: Analysis of the vertical vibration effects on ride comfort of vehicle driver. J. Vibroeng. 14(2), 559-571 (2012)
[25] Taffo, G.I.K., Siewe, M.S.: Parametric resonance, stability and heteroclinic bifurcation in a nonlinear oscillator with time-delay: application to a quarter-car model. Mech. Res. Commun. 52, 1-10 (2013) · doi:10.1016/j.mechrescom.2013.05.007
[26] Taffo, G.I.K., Siewe, M.S., Tchawoua, C.: Stability switches and bifurcation in a two-degrees-of-freedom nonlinear quarter-car with small time-delayed feedback control. Chaos Soliton Fractals 87, 226-239 (2016) · Zbl 1355.70032 · doi:10.1016/j.chaos.2016.04.012
[27] Li, P., Lam, J., Cheung, K.C.: Multi-objective control for active vehicle suspension with wheelbase preview. J. Sound Vib. 333(21), 5269-5282 (2016) · doi:10.1016/j.jsv.2014.06.017
[28] Zhang, J.H., Guo, P., Lin, J.W., Wang, K.N.: A mathematical model for coupled vibration system of road vehicle and coupling effect analysis. Appl. Math. Model. 40(2), 1199-1217 (2016) · Zbl 1446.70010 · doi:10.1016/j.apm.2015.07.012
[29] Sheng, Y., Wu, G.Q.: Quantitative study of automotive nonlinear suspension system based on incremental harmonic balance method. J. TongJi Univ. (Nat. Sci.) 39(3), 405-410 (2011)
[30] Silveira, M., Wahi, P., Fernandes, J.C.M.: Effects of asymmetrical damping on a 2 DOF quarter-car model under harmonic excitation. Commun. Nonlinear Sci. Numer. Simul. 43, 14-24 (2017) · Zbl 1465.70071 · doi:10.1016/j.cnsns.2016.06.029
[31] Silveira, M.P., Fernandes, J.C.M.: Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles. J. Sound Vib. 333(7), 2114-2129 (2014) · doi:10.1016/j.jsv.2013.12.001
[32] Zhu, S.J., Zheng, Y.F., Fu, Y.M.: Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with non-linear damping and non-linear spring. J. Sound Vib. 271(1-2), 15-24 (2004) · doi:10.1016/S0022-460X(03)00249-9
[33] Zhou, S.H., Song, G.Q., Sun, M.N., Ren, Z.H.: Nonlinear dynamic analysis of a quarter vehicle system with external periodic excitation. Int. J. Non-linear Mech. 84, 82-93 (2016) · doi:10.1016/j.ijnonlinmec.2016.04.014
[34] Wang, S., Hua, L., Yang, C., Zhang, Y.O., Tan, X.D.: Nonlinear vibrations of a piecewise-linear quarter-car truck model by incremental harmonic balance method. Nonlinear Dyn. 92(5), 1719-1732 (2018) · doi:10.1007/s11071-018-4157-6
[35] Zhou, S.H., Guiqiu Song, G.Q., Sun, M.N., Ren, Z.H., Wen, B.C.: Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities. Mech. Syst. Signal Process. 412, 74-94 (2018)
[36] Kane, T.T., Man, G.G.K.: The importance of slip law nonlinearity in the theory of steady turning of automobiles. Mech. Res. Commun. 4(5), 315-320 (1977) · doi:10.1016/0093-6413(77)90008-8
[37] Wu, G.Q., Sheng, Y.: Review on the application of chaos theory in automobile nonlinear system. J. Mech. Eng. 46(10), 81-87 (2010) · doi:10.3901/JME.2010.10.081
[38] Liu, R.X.: Study of tractor tire stiffness and damping characteristics. Trans. Chin. Soc. Agric. Mach. 2, 17-24 (1988)
[39] Qiu, X.D., Ji, X.W., Wang, Z.H., Zhuang, J.D.: Study on non-linear characteristics of tire stiffness. J. Jilin Univ. Technol. 24(4), 9-15 (1994)
[40] Ji, X.W., Gao, Y.M., Qiu, X.D., Li, Y.D., Zhuang, J.D.: The dynamic stiffness and damping characteristics of the tire. Automot. Eng. 16(5), 315-320 (1994)
[41] Wang, S., Hua, H., Yang, C., Han, X.H., Su, Z.Y.: Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems. J. Sound Vib. 441, 111-125 (2019) · doi:10.1016/j.jsv.2018.10.039
[42] Ferreiar, J.V., Serpa, A.L.: Application of the arc-length method in nonlinear frequency response. J. Sound Vib. 284(1-2), 133-149 (2005) · doi:10.1016/j.jsv.2004.06.025
[43] Leung, A.Y.T., Chui, S.K.: Non-linear vibration of coupled duffing oscillators by an improved incremental harmonic balance method. J. Sound Vib. 181(4), 619-633 (1995) · Zbl 1237.70008 · doi:10.1006/jsvi.1995.0162
[44] Cheung, Y.K., Chen, S.H.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273-286 (1990) · doi:10.1016/0022-460X(90)90528-8
[45] Huang, J.L., Su, R.K.L., Li, W.H., Chen, S.H.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330(3), 471-485 (2011) · doi:10.1016/j.jsv.2010.04.037
[46] Kong, X.X., Sun, W., Wang, B., Wen, B.C.: Dynamic and stability analysis of the linear guide with time-varying, piecewise-nonlinear stiffness by multi-term incremental harmonic balance method. J. Sound Vib. 346, 265-283 (2015) · doi:10.1016/j.jsv.2015.02.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.