×

Heterogeneously parameterized tube model predictive control for LPV systems. (English) Zbl 1430.93063

Summary: This paper presents a heterogeneously parameterized tube-based model predictive control (MPC) design applicable to linear parameter-varying (LPV) systems. In a heterogeneous tube, the parameterizations of the tube cross sections and the associated control laws are allowed to vary along the prediction horizon. Two extreme cases that can be described in this framework are scenario MPC (high complexity, larger domain of attraction) and homothetic tube MPC with a simple time-invariant control parameterization (low complexity, smaller domain of attraction). In the proposed framework, these extreme parameterizations, as well as other parameterizations of intermediate complexity, can be combined within a single tube. By allowing for more flexibility in the parameterization design, one can influence the trade-off between computational cost and the size of the domain of attraction. Sufficient conditions on the parameterization structure are developed under which recursive feasibility and closed-loop stability are guaranteed. A specific parameterization that combines the principles of scenario and homothetic tube MPC is proposed and it is shown to satisfy the required conditions. The properties of the approach, including its capability of achieving improved complexity/performance trade-offs, are demonstrated using two numerical examples.

MSC:

93B45 Model predictive control
93B35 Sensitivity (robustness)
93C05 Linear systems in control theory

References:

[1] Abelson, H.; Sussman, G. J.; Sussman, J., Structure and interpretation of computer programs (1996), MIT Press · Zbl 0909.68025
[2] Aeyels, D.; Peuteman, J., A new asymptotic stability criterion for nonlinear time-variant differential equations, IEEE Transactions on Automatic Control, 43, 968-971 (1998) · Zbl 0982.34044
[3] Bacic, M.; Cannon, M.; Lee, Y. I.; Kouvaritakis, B., General interpolation in MPC and its advantages, IEEE Transactions on Automatic Control, 48, 1092-1096 (2003) · Zbl 1364.93232
[4] Blanchini, F.; Miani, S.; Savorgnan, C., Stability results for linear parameter varying and switching systems, Automatica, 43, 1817-1823 (2007) · Zbl 1119.93062
[5] Brunner, F. D., Lazar, M., & Allgöwer, F. (2013). An explicit solution to constrained stabilization via polytopic tubes. In Proc. of the 52nd IEEE conference on decision and control (pp. 7721-7727).
[6] Cannon, M.; Kouvaritakis, B., Optimizing prediction dynamics for robust MPC, IEEE Transactions on Automatic Control, 50, 1892-1897 (2005) · Zbl 1365.93170
[7] Casavola, A.; Famularo, D.; Franzè, G., A feedback min-max MPC algorithm for LPV systems subject to bounded rates of change of parameters, IEEE Transactions on Automatic Control, 47, 1147-1153 (2002) · Zbl 1364.93389
[8] Casavola, A.; Famularo, D.; Franzè, G., A predictive control strategy for norm-bounded LPV discrete-time systems with bounded rates of parameter change, International Journal of Robust and Nonlinear Control, 18, 714-740 (2008) · Zbl 1284.93146
[9] Casavola, A., Famularo, D., Franzè, G., & Garone, E. (2007). A dilated MPC control strategy for LPV linear systems. In Proc. of the 2007 european control conference (pp. 460-466).
[10] Fleming, J.; Kouvaritakis, B.; Cannon, M., Robust tube MPC for linear systems with multiplicative uncertainty, IEEE Transactions on Automatic Control, 60, 1087-1092 (2015) · Zbl 1360.93234
[11] Goulart, P. J.; Kerrigan, E. C.; Ralph, D., Efficient robust optimization for robust control with constraints, Mathematical Programming, 114, 115-147 (2008) · Zbl 1143.49025
[12] Hanema, J.; Lazar, M.; Tóth, R., Stabilizing tube-based model predictive control: Terminal set and cost construction for LPV systems, Automatica, 85, 137-144 (2017) · Zbl 1375.93050
[13] Hanema, J., Tóth, R., & Lazar, M. (2016). Tube-based anticipative model predictive control for linear parameter-varying systems. In Proc. of the 55th IEEE conference on decision and control (pp. 1458-1463).
[14] Hanema, J., Tóth, R., & Lazar, M. (2017). Stabilizing non-linear MPC using linear parameter-varying representations. In Proc. of the 56th IEEE conference on decision and control (pp. 3582-3587).
[15] Jiang, Z. P.; Wang, Y., A converse Lyapunov theorem for discrete-time systems with disturbances, Systems & Control Letters, 45, 49-58 (2002) · Zbl 0987.93072
[16] Kerrigan, E. C.; Maciejowski, J. M., Feedback min-max model predictive control using a single linear program: robust stability and the explicit solution, International Journal of Robust and Nonlinear Control, 14, 395-413 (2004) · Zbl 1051.93034
[17] Kouvaritakis, B.; Rossiter, J. A.; Schuurmans, J., Efficient robust predictive control, IEEE Transactions on Automatic Control, 45, 1545-1549 (2000) · Zbl 0988.93022
[18] Langson, W.; Chryssochoos, I.; Raković, S. V.; Mayne, D. Q., Robust model predictive control using tubes, Automatica, 40, 125-133 (2004) · Zbl 1036.93019
[19] Lee, J. H.; Yu, Z., Worst-case formulations of model predictive control for systems with bounded parameters, Automatica, 33, 763-781 (1997) · Zbl 0878.93025
[20] Lu, Y.; Arkun, Y., Quasi-Min-Max MPC algorithms for LPV systems, Automatica, 36, 527-540 (2000) · Zbl 0981.93027
[21] Lucia, S.; Finkler, T.; Engell, S., Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty, Journal of Process Control, 23, 1306-1319 (2013)
[22] Lucia, S., Paulen, R., & Engell, S. (2014). Multi-stage Nonlinear Model Predictive Control with verified robust constraint satisfaction. In Proc. of the IEEE conference on decision and control (pp. 2816-2821).
[23] Maiworm, M., Bäthge, T., & Findeisen, R. (2015). Scenario-based model predictive control: recursive feasibility and stability. In Proc. of the 9th IFAC symposium on advanced control of chemical processes (pp. 50-56).
[24] Mayne, D. Q.; Rawlings, J. B.; Rao, C. V.; Scokaert, P. O.M., Constrained model predictive control: Stability and optimality, Automatica, 36, 789-814 (2000) · Zbl 0949.93003
[25] Mayne, D. Q.; Seron, M. M.; Raković, S. V., Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41, 219-224 (2005) · Zbl 1066.93015
[26] Miani, S., & Savorgnan, C. (2005). MAXIS-G: A software package for computing polyhedral invariant sets for constrained LPV systems. In Proc. of the 44th IEEE conference on decision and control, and the european control conference (pp. 7609-7614).
[27] Muñoz de la Peña, D., Alamo, T., Bemporad, A., & Camacho, E. F. (2006). Feedback min-max model predictive control based on a quadratic cost function. In Proc. of the 2006 american control conference (pp. 1575-1580). · Zbl 1366.93184
[28] Muñoz de la Peña, D., Alamo, T., Ramirez, D. R., & Camacho, E. F. (2005). Min-max model predictive control as a quadratic program. In Proc. of the 16th IFAC world congress (pp. 263-268).
[29] Muñoz-Carpintero, D.; Cannon, M.; Kouvaritakis, B., Robust MPC strategy with optimized polytopic dynamics for linear systems with additive and multiplicative uncertainty, Systems & Control Letters, 81, 34-41 (2015) · Zbl 1330.93097
[30] Pluymers, B.; Suykens, J. A.K.; De Moor, B., Min-max feedback MPC using a time-varying terminal constraint set and comments on Efficient robust constrained model predictive control with a time-varying terminal constraint set, Systems & Control Letters, 54, 1143-1148 (2005) · Zbl 1129.93486
[31] Raković, S. V., Robust model-predictive control, (Encyclopedia of systems and control (2015), Springer), 1225-1233
[32] Raković, S. V.; Kouvaritakis, B.; Cannon, M.; Panos, C.; Findeisen, R., Parameterized tube model predictive control, IEEE Transactions on Automatic Control, 57, 2746-2761 (2012) · Zbl 1369.93240
[33] Raković, S. V.; Kouvaritakis, B.; Findeisen, R.; Cannon, M., Homothetic tube model predictive control, Automatica, 48, 1631-1638 (2012) · Zbl 1267.93049
[34] Raković, S. V., Levine, W. S., & Açıkmeşe, B. (2016). Elastic tube model predictive control. In Proc. of the 2016 american control conference (pp. 3594-3599).
[35] Rawlings, J. B.; Mayne, D. Q., Model predictive control: Theory and design (2009), Nob Hill Publishing
[36] Scokaert, P. O.M.; Mayne, D. Q., Min-max feedback model predictive control for constrained linear systems, IEEE Transactions on Automatic Control, 43, 1136-1142 (1998) · Zbl 0957.93034
[37] Subramanian, S., Lucia, S., Birjandi, S. A. B., Paulen, R., & Engell, S. (2018). A combined multi-stage and Tube-based MPC scheme for constrained linear systems. In Proc. of the 6th IFAC conference on nonlinear model predictive control (pp. 481-486).
[38] Wan, Z.; Pluymers, B.; Kothare, M. V.; De Moor, B., Comments on: Efficient robust constrained model predictive control with a time varying terminal constraint set by Wan and Kothare, Automatica, 55, 618-621 (2006) · Zbl 1129.93526
[39] Zheng, P.; Li, D.; Xi, Y.; Zhang, J., Improved model prediction and RMPC design for LPV systems with bounded parameter changes, Automatica, 49, 3695-3699 (2013) · Zbl 1315.93032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.