×

Amortized entanglement of a quantum channel and approximately teleportation-simulable channels. (English) Zbl 1430.81013

Summary: This paper defines the amortized entanglement of a quantum channel as the largest difference in entanglement between the output and the input of the channel, where entanglement is quantified by an arbitrary entanglement measure. We prove that the amortized entanglement of a channel obeys several desirable properties, and we also consider special cases such as the amortized relative entropy of entanglement and the amortized Rains relative entropy. These latter quantities are shown to be single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of a quantum channel, respectively. Of especial interest is a uniform continuity bound for these latter two special cases of amortized entanglement, in which the deviation between the amortized entanglement of two channels is bounded from above by a simple function of the diamond norm of their difference and the output dimension of the channels. We then define approximately teleportation- and positive-partial-transpose-simulable (PPT-simulable) channels as those that are close in diamond norm to a channel which is either exactly teleportation- or PPT-simulable, respectively. These results then lead to single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of channels that are approximately teleportation- or PPT-simulable, respectively. Finally, we generalize many of the concepts in the paper to the setting of general resource theories, defining the amortized resourcefulness of a channel and the notion of \(\nu\)-freely-simulable channels, connecting these concepts in an operational way as well.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)

References:

[1] Audenaert K, De Moor B, Vollbrecht K G H and Werner R F 2002 Asymptotic relative entropy of entanglement for orthogonally invariant states {\it Phys. Rev.} A 66 032310
[2] Azuma K, Mizutani A and Lo H-K 2016 Fundamental rate-loss trade-off for the quantum internet {\it Nat. Commun.}7 13523
[3] Ambainis A, Mosca M, Tapp A and de Wolf R 2000 Private quantum channels {\it IEEE 41st Annual Symp. on Foundations of Computer Science} pp 547-53
[4] Bäuml S and Azuma K 2017 Fundamental limitation on quantum broadcast networks {\it Quantum Sci. Technol.}2 024004
[5] Brandão F G S L, Horodecki M, Oppenheim J, Renes J M and Spekkens R W 2013 Resource theory of quantum states out of thermal equilibrium {\it Phys. Rev. Lett.}111 250404
[6] Bennett C H and Brassard G 1984 Quantum cryptography: public key distribution and coin tossing {\it Proc. of IEEE Int. Conf. on Computers Systems, Signal Processing,}{\it (Bangalore and India,)} pp 175-9
[7] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels {\it Phys. Rev. Lett.}70 1895-9 · Zbl 1051.81505
[8] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Purification of noisy entanglement and faithful teleportation via noisy channels {\it Phys. Rev. Lett.}76 722-5
[9] Brandao F G, Christandl M and Yard J 2011 Faithful squashed entanglement {\it Commun. Math. Phys.}306 805-30 · Zbl 1231.81011
[10] Brandao F G S L and Datta N 2011 One-shot rates for entanglement manipulation under non-entangling maps {\it IEEE Trans. Inf. Theory}57 1754-60 · Zbl 1366.81051
[11] Ben Dana K, García Díaz M, Mejatty M and Winter A 2017 Resource theory of coherence: beyond states {\it Phys. Rev.} A 95 062327
[12] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Mixed-state entanglement and quantum error correction {\it Phys. Rev.} A 54 3824-51 · Zbl 1371.81041
[13] Brandao F G S L and Gour G 2015 Reversible framework for quantum resource theories {\it Phys. Rev. Lett.}115 070503
[14] Bennett C H, Harrow A W, Leung D W and Smolin J A 2003 On the capacities of bipartite Hamiltonians and unitary gates {\it IEEE Trans. Inf. Theory}49 1895-911 · Zbl 1285.81010
[15] Braunstein S L and Kimble H J 1998 Teleportation of continuous quantum variables {\it Phys. Rev. Lett.}80 869-72
[16] Bennett C H, Shor P W, Smolin J A and Thapliyal A V 1999 Entanglement-assisted classical capacity of noisy quantum channels {\it Phys. Rev. Lett.}83 3081-4
[17] Bennett C H, Shor P W, Smolin J A and Thapliyal A V 2002 Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem {\it IEEE Trans. Inf. Theory}48 2637-55 · Zbl 1062.94011
[18] Chiribella G, D’Ariano G M and Perinotti P 2009 Realization schemes for quantum instruments in finite dimensions {\it J. Math. Phys.}50 042101 · Zbl 1214.81026
[19] Christandl M 2006 The structure of bipartite quantum states: insights from group theory and cryptography {\it PhD Thesis} University of Cambridge
[20] Christandl M and Müller-Hermes A 2017 Relative entropy bounds on quantum, private and repeater capacities {\it Commun. Math. Phys.}353 821-52 · Zbl 1366.81084
[21] Christandl M and Winter A 2004 Squashed entanglement: an additive entanglement measure {\it J. Math. Phys.}45 829-40 · Zbl 1070.81013
[22] Datta N 2009 Min- and max-relative entropies and a new entanglement monotone {\it IEEE Trans. Inf. Theory}55 2816-26 · Zbl 1367.81021
[23] Demkowicz-Dobrzański R and Maccone L 2014 Using entanglement against noise in quantum metrology {\it Phys. Rev. Lett.}113 250801
[24] Devetak I, Junge M, King C and Ruskai M B 2006 Multiplicativity of completely bounded p-norms implies a new additivity result {\it Commun. Math. Phys.}266 37-63 · Zbl 1118.46057
[25] del Rio L, Kraemer L and Renner R 2015 Resource theories of knowledge (arXiv:1511.08818)
[26] Devetak I and Winter A 2005 Distillation of secret key and entanglement from quantum states {\it Proc. R. Soc.} A 461 207-35 · Zbl 1145.81325
[27] Das S and Wilde M M 2017 Quantum reading capacity: general definition and bounds (arXiv:1703.03706) · Zbl 1433.94039
[28] Ekert A K 1991 Quantum cryptography based on Bell’s theorem {\it Phys. Rev. Lett.}67 661-3 · Zbl 0990.94509
[29] Fawzi H and Fawzi O 2017 Relative entropy optimization in quantum information theory via semidefinite programming approximations (arXiv:1705.06671) · Zbl 1349.90671
[30] Fritz T 2017 Resource convertibility and ordered commutative monoids {\it Math. Struct. Comput. Sci.}27 189-938 · Zbl 1410.91308
[31] Goodenough K, Elkouss D and Wehner S 2016 Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels {\it New J. Phys.}18 063005
[32] Horodecki M, Horodecki P and Horodecki R 1996 Separability of mixed states: necessary and sufficient conditions {\it Phys. Lett.} A 223 · Zbl 1037.81501
[33] Horodecki M, Horodecki P and Horodecki R 1999 General teleportation channel, singlet fraction and quasidistillation {\it Phys. Rev.} A 60 1888-98 · Zbl 1005.81505
[34] Horodecki K, Horodecki M, Horodecki P, Leung D and Oppenheim J 2008 Quantum key distribution based on private states: unconditional security over untrusted channels with zero quantum capacity {\it IEEE Trans. Inf. Theory}54 2604-20 · Zbl 1328.94068
[35] Horodecki K, Horodecki M, Horodecki P, Leung D and Oppenheim J 2008 Unconditional privacy over channels which cannot convey quantum information {\it Phys. Rev. Lett.}100 110502 · Zbl 1328.94068
[36] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Quantum entanglement {\it Rev. Mod. Phys.}81 865-942 · Zbl 1205.81012
[37] Horodecki K, Horodecki M, Horodecki P and Oppenheim J 2005 Locking entanglement with a single qubit {\it Phys. Rev. Lett.}94 200501 · Zbl 1101.81029
[38] Horodecki K, Horodecki M, Horodecki P and Oppenheim J 2005 Secure key from bound entanglement {\it Phys. Rev. Lett.}94 160502 · Zbl 1101.81029
[39] Horodecki K, Horodecki M, Horodecki P and Oppenheim J 2009 General paradigm for distilling classical key from quantum states {\it IEEE Trans. Inf. Theory}55 1898-929 · Zbl 1367.81045
[40] Holevo A S 2002 Remarks on the classical capacity of quantum channel (arXiv:quant-ph/0212025)
[41] Holevo A S 2006 Multiplicativity of p-norms of completely positive maps and the additivity problem in quantum information theory {\it Russ. Math. Surv.}61 301-39 · Zbl 1325.81052
[42] Holevo A S 2012 {\it Quantum Systems, Channels, Information}{\it (Studies in Mathematical Physics vol 16)} (Berlin: Walter de Gruyter) · Zbl 1332.81003
[43] Horodecki M, Shor P W and Ruskai M B 2003 Entanglement breaking channels {\it Rev. Math. Phys.}15 629-41 · Zbl 1080.81006
[44] Kraemer L and del Rio L 2016 Currencies in resource theories (arXiv:1605.01064)
[45] Kitaev A Y 1997 Quantum computations: algorithms and error correction {\it Russ. Math. Surv.}52 1191-249 · Zbl 0917.68063
[46] Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2008 Randomized benchmarking of quantum gates {\it Phys. Rev.} A 77 012307 · Zbl 1109.81307
[47] Koashi M and Winter A 2004 Monogamy of quantum entanglement and other correlations {\it Phys. Rev.} A 69 022309
[48] Kaur E and Wilde M M 2017 Upper bounds on secret key agreement over lossy thermal bosonic channels (arXiv:1706.04590)
[49] Lütkenhaus N and Guha S 2015 Quantum repeaters: objectives, definitions and architectures definitions and architectures (available at http://wqrn.pratt.duke.edu/presentations.html
[50] Leifer M S, Henderson L and Linden N 2003 Optimal entanglement generation from quantum operations {\it Phys. Rev.} A 67 012306
[51] Lindblad G 1973 Entropy, information and quantum measurements {\it Commun. Math. Phys.}33 305-22
[52] Lindblad G 1975 Completely positive maps and entropy inequalities {\it Commun. Math. Phys.}40 147-51 · Zbl 0298.46062
[53] Leditzky F, Kaur E, Datta N and Wilde M M 2017 Approaches for approximate additivity of the Holevo information of quantum channels (arXiv:1709.01111)
[54] Leditzky F, Leung D and Smith G 2017 Quantum and private capacities of low-noise channels (arXiv:1705.04335)
[55] Linden N, Popescu S, Schumacher B and Westmoreland M 2005 Reversibility of local transformations of multiparticle entanglement {\it Quantum Inf. Process.}4 241-50 · Zbl 1130.81014
[56] Lieb E H and Ruskai M B 1973 A fundamental property of quantum-mechanical entropy {\it Phys. Rev. Lett.}30 434-6
[57] Lieb E H and Ruskai M B 1973 Proof of the strong subadditivity of quantum-mechanical entropy {\it J. Math. Phys.}14 1938-41
[58] Li K and Winter A 2014 Squashed entanglement, k-extendibility, quantum Markov chains and recovery maps (arXiv:1410.4184)
[59] Müller-Hermes A 2012 Transposition in quantum information theory {\it Master’s Thesis} Technical University of Munich
[60] Müller-Lennert M, Dupuis F, Szehr O, Fehr S and Tomamichel M 2013 On quantum Rényi entropies: a new definition and some properties {\it J. Math. Phys.}54 122203 · Zbl 1290.81016
[61] Marvian I and Spekkens R W 2014 Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames {\it Phys. Rev.} A 90 062110 · Zbl 1306.81022
[62] Matthews W and Wehner S 2014 Finite blocklength converse bounds for quantum channels {\it IEEE Trans. Inf. Theory}60 7317-29 · Zbl 1360.81097
[63] Niset J, Fiurasek J and Cerf N J 2009 No-go theorem for Gaussian quantum error correction {\it Phys. Rev. Lett.}102 120501
[64] Peres A 1996 Separability criterion for density matrices {\it Phys. Rev. Lett.}77 1413-5 · Zbl 0947.81003
[65] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2016 Fundamental limits of repeaterless quantum communications (arXiv:1510.08863v5)
[66] Rains E M 1999 Bound on distillable entanglement {\it Phys. Rev.} A 60 179-84
[67] Rains E M 2001 A semidefinite program for distillable entanglement {\it IEEE Trans. Inf. Theory}47 2921-33 · Zbl 0998.81012
[68] Rozpedek F, Goodenough K, Ribeiro J, Kalb N, Vivoli V C, Reiserer A, Hanson R, Wehner S and Elkouss D 2017 Realistic parameter regimes for a single sequential quantum repeater (arXiv:1705.00043)
[69] Rigovacca L, Kato G, Baeuml S, Kim M S, Munro W J and Azuma K 2017 Versatile relative entropy bounds for quantum networks (arXiv:1707.05543)
[70] Shirokov M E 2016 Continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy (arXiv:1610.08870)
[71] Schumacher B and Nielsen M A 1996 Quantum data processing and error correction {\it Phys. Rev.} A 54 2629-35
[72] Smith G, Smolin J A and Winter A 2008 The quantum capacity with symmetric side channels {\it IEEE Trans. Inf. Theory}54 4208-17 · Zbl 1327.94020
[73] Sutter D, Scholz V B, Winter A and Renner R 2014 Approximate degradable quantum channels (arXiv:1412.0980) · Zbl 1390.81109
[74] Seshadreesan K P, Takeoka M and Wilde M M 2016 Bounds on entanglement distillation and secret key agreement for quantum broadcast channels {\it IEEE Trans. Inf. Theory}62 2849-66 · Zbl 1359.81045
[75] Takeoka M, Guha S and Wilde M M 2014 Fundamental rate-loss tradeoff for optical quantum key distribution {\it Nat. Commun.}5 5235
[76] Takeoka M, Guha S and Wilde M M 2014 The squashed entanglement of a quantum channel {\it IEEE Trans. Inf. Theory}60 4987-98 · Zbl 1360.81077
[77] Takeoka M, Seshadreesan K P and Wilde M M 2016 Unconstrained distillation capacities of a pure-loss bosonic broadcast channel {\it IEEE Int. Symposium on Information Theory} pp 2484-8
[78] Takeoka M, Seshadreesan K P and Wilde M M 2017 Unconstrained capacities of quantum key distribution and entanglement distillation for pure-loss bosonic broadcast channels {\it Phys. Rev. Lett.}119 150501
[79] Tucci R R 1999 Quantum entanglement and conditional information transmission (arXiv:quant-ph/9909041)
[80] Tucci R R 2002 Entanglement of distillation and conditional mutual information (arXiv:quant-ph/0202144)
[81] Tomamichel M, Wilde M M and Winter A 2017 Strong converse rates for quantum communication {\it IEEE Trans. Inf. Theory}63 715-27 · Zbl 1359.81077
[82] Uhlmann A 1976 The ‘transition probability’ in the state space of a *-algebra {\it Rep. Math. Phys.}9 273-9 · Zbl 0355.46040
[83] Umegaki H 1962 Conditional expectations in an operator algebra IV (entropy and information) {\it Kodai Math. Semin. Rep.}14 59-85 · Zbl 0199.19706
[84] Vedral V and Plenio M B 1998 Entanglement measures and purification procedures {\it Phys. Rev.} A 57 1619-33
[85] Watrous J 2015 {\it Theory Quantum Inf.}
[86] Werner R F 1989 Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model {\it Phys. Rev.} A 40 4277-81 · Zbl 1371.81145
[87] Werner R F 2001 All teleportation and dense coding schemes {\it J. Phys. A: Math. Gen.}34 7081 · Zbl 1024.81006
[88] Wilde M M 2016 From classical to quantum shannon theory arXiv:1106.1445v7
[89] Wilde M M 2016 Squashed entanglement and approximate private states {\it Quantum Inf. Process.}15 4563-80 · Zbl 1357.81079
[90] Winter A 2016 Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints {\it Commun. Math. Phys.}347 291-313 · Zbl 1348.81154
[91] Wolf M M, Pérez-García D and Giedke G 2007 Quantum capacities of bosonic channels {\it Phys. Rev. Lett.}98 130501
[92] Wang L and Renner R 2012 One-shot classical-quantum capacity and hypothesis testing {\it Phys. Rev. Lett.}108 200501
[93] Wilde M M, Tomamichel M and Berta M 2017 Converse bounds for private communication over quantum channels {\it IEEE Trans. Inf. Theory}63 1792-817 · Zbl 1366.81110
[94] Wilde M M, Winter A and Yang D 2014 Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy {\it Commun. Math. Phys.}331 593-622 · Zbl 1303.81042
[95] Winter A and Yang D 2016 Potential capacities of quantum channels {\it IEEE Trans. Inf. Theory}62 1415-24 · Zbl 1359.81079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.