×

Three models for two phase flow in porous media. (English) Zbl 1430.76447

Summary: We compare three different models of two phase flow in a porous medium; the standard Darcy/Buckley-Leverett model, the Brinkman model and the Helmholtz model. These three models are all singular perturbations of the inviscid Darcy model, and thus have the same formal limits. The existence of such limits have not been proved mathematically, and in this paper we investigate numerically whether limits exist, and whether they are similar.

MSC:

76S05 Flows in porous media; filtration; seepage
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
35L65 Hyperbolic conservation laws
35Q35 PDEs in connection with fluid mechanics
76T99 Multiphase and multicomponent flows

Software:

SINTEF; Matlab

References:

[1] Aarnes, J.E., Gimse, T., Lie, K.-A.: An introduction to the numerics of flow in porous media using Matlab. In: Hasle, G., Lie, K.-A., Quak, E. (eds.) Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF, pp 265-306. Springer, Berlin (2007) · Zbl 1330.76004
[2] Adimurthi, Ms; Veerappa Gowda, Gd, Conservation law with the flux function discontinuous in the space variable—II. Convex-concave type fluxes and generalized entropy solutions, J. Comput. Appl. Math., 203, 310-344 (2007) · Zbl 1131.65071 · doi:10.1016/j.cam.2006.04.009
[3] Andreianov, B.; Karlsen, Kh; Risebro, Nh, A theory of l1-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Rational Mech. Anal., 201, 27-86 (2011) · Zbl 1261.35088 · doi:10.1007/s00205-010-0389-4
[4] Armiti-Juber, A., Rohde, C.: On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains. arXiv:1712.07470 (2017) · Zbl 1414.76051
[5] Brinkman, Hc, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow. Turbul. Combust., 1, 27-34 (1949) · Zbl 0041.54204 · doi:10.1007/BF02120313
[6] Chen, G-Q; Karlsen, Kh, Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients, Commun. Pure Appl. Anal., 4, 241-266 (2005) · Zbl 1084.35034 · doi:10.3934/cpaa.2005.4.241
[7] Coclite, Gm; Karlsen, Kh; Mishra, S.; Risebro, Nh, A hyperbolic-elliptic model of two-phase flow in porous media—existence of entropy solutions, Int. J. Numer. Anal. Model., 9, 562-583 (2012) · Zbl 1277.76100
[8] Coclite, Gm; Mishra, S.; Risebro, Nh, Convergence of an Engquist-Osher scheme for a multi-dimensional triangular system of conservation laws, Math. Comput., 79, 71-94 (2010) · Zbl 1369.65108 · doi:10.1090/S0025-5718-09-02251-0
[9] Coclite, Gm; Mishra, S.; Risebro, Nh; Weber, F., Analysis and numerical approximation of Brinkman regularization of two-phase flows in porous media, Comput. Geosci., 18, 637-659 (2014) · Zbl 1392.76075 · doi:10.1007/s10596-014-9410-6
[10] Coclite, Gm; Risebro, Nh, Conservation laws with time dependent discontinuous coefficients, SIAM J. Math. Anal., 36, 1293-1309 (2005) · Zbl 1078.35071 · doi:10.1137/S0036141002420005
[11] Eymard, R.; Herbin, R.; Michel, A., Mathematical study of a petroleum- engineering scheme, ESAIM Math. Model. Numer. Anal., 37, 937-972 (2003) · Zbl 1118.76355 · doi:10.1051/m2an:2003062
[12] Gimse, T.; Risebro, Nh, Solution of the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal., 23, 635-648 (1992) · Zbl 0776.35034 · doi:10.1137/0523032
[13] Holden, Helge; Risebro, Nils Henrik, Multidimensional Scalar Conservation Laws, Applied Mathematical Sciences, 171-221 (2015), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 0799.35150
[14] Karlsen, Kh; Risebro, Nh; Towers, Jd, L1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk., 3, 1-49 (2003) · Zbl 1036.35104
[15] Karlsen, Kh; Risebro, Nh, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, ESAIM Math. Model. Numer. Anal., 35, 239-269 (2001) · Zbl 1032.76048 · doi:10.1051/m2an:2001114
[16] Kroener, D.; Luckhaus, S., Flow of oil and water in a porous medium, J. Differ. Equ., 55, 276-288 (1984) · Zbl 0509.35048 · doi:10.1016/0022-0396(84)90084-6
[17] Kruzhkov, Sn; Sukorjanskiĭ, Sm, Boundary value problems for systems of equations of two-phase filtration type; formulation of problems, questions of solvability, justification of approximate methods, Mat. Sb. (N.S.), 104, 146, 69-88, 175-176 (1977) · Zbl 0372.35017
[18] Lefloch, Pg, Hyperbolic Systems of Conservation Laws. Lectures in Mathematics ETH Zürich (2002), Birkhäuser: Basel, Birkhäuser · Zbl 1019.35001
[19] Lukkhaus, S.; Plotnikov, Pi, Entropy solutions of Buckley-Leverett equations, Sibirsk. Mat. Zh., 41, 400-420 (2000) · Zbl 0949.76081
[20] Neuman, Sp, Theoretical derivation of Darcy’s law, Acta Mech., 25, 153-170 (1977) · Zbl 0402.76074 · doi:10.1007/BF01376989
[21] Otto, F.: Stability investigation of planar solutions of the Buckley-Leverett equation. Tech. report, Sonderforchungbereich 256 (1995)
[22] Peaceman, Dw, Fundamentals of Numerical Reservoir Simulation (1991), New York: Elsevier Science Inc., New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.