×

Magnetoelastic axisymmetric multi-modal resonance and Hopf bifurcation of a rotating circular plate under aerodynamic load. (English) Zbl 1430.76194

Summary: In this article, an investigation of magnetoelastic axisymmetric multi-mode interaction and Hopf bifurcations of a circular plate rotating in air and uniform transverse magnetic fields is presented. The expressions of electromagnetic forces and an empirical aerodynamic model are applied in the derivation of the dynamical equations, through which a set of nonlinear differential equations for axisymmetric forced oscillation of the clamped circular plate are deduced. The method of multiple scales combined with the polar coordinate transformation is employed to solve the differential equations and achieve the phase-amplitude modulation equations for the interaction among the first three modes under primary resonance. Then, the frequency response equation for the single-mode vibration, the steady-state response equations for three-mode resonance and the corresponding Jacobian matrix are obtained by means of the modulation equations. Numerical examples are presented to show the dependence of amplitude solutions as a function of different parameters in the cases of single mode and three-mode response. Furthermore, a Hopf bifurcation can be found in three-mode equilibrium by choosing appropriate parameters, where a limit cycle occurs and then evolves into chaos after undergoing a series of period-doubling bifurcations.

MSC:

76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Chona, S., Jiang, Z.W., Shyu, Y.J.: Stability analysis of a 2” floppy disk drive system and the optimum design of the disk stabilizer. J. Vib. Acoust. 114(2), 283-286 (1992)
[2] Hoska, H.C., Randall, S.: Self-excited vibrations of a flexible disk rotating on an air film above a surface. Acta Mech. 3, 115-127 (1992) · Zbl 0800.73160
[3] Renshaw, A.A., Mote, C.D.: Absence of one nodal diameter critical speed modes in an axisymmetric rotating disk. J. Appl. Mech. 59(3), 687-688 (1992) · Zbl 0775.73150 · doi:10.1115/1.2893783
[4] Renshaw, A.A., D’Angelo, C., Mote, C.D.: Aerodynamically excited vibration of a rotating disk. J. Sound Vib. 177(5), 577-590 (1994) · Zbl 0948.74509 · doi:10.1006/jsvi.1994.1454
[5] Renshaw, A.A.: Critical speeds for floppy disks. J. Appl. Mech. 65(1), 116-120 (1998) · doi:10.1115/1.2789013
[6] Kim, H.R., Renshaw, A.A.: Aeroelastic flutter of circular rotating disks: a simple predictive model. J. Sound Vib. 256(2), 227-248 (2002) · doi:10.1006/jsvi.2001.4203
[7] Yasuda, K., Torii, T., Shimizu, T.: Self-excited oscillations of a circular disk rotating in air. JSME Int. J. Ser. III. 35(3), 347-352 (1992)
[8] Kim, B.C., Raman, A., Mote, C.D.: Prediction of aeroelastic flutter in a hard disk drive. J. Sound Vib. 238(2), 309-325 (2000) · doi:10.1006/jsvi.2000.3209
[9] Hansen, M.H., Raman, A., Mote, C.D.: Estimation of nonconservative aero-dynamic pressure leading to flutter of spinning disks. J. Fluids Struct. 15(1), 39-57 (2005) · doi:10.1006/jfls.2000.0326
[10] Wang, X.Z., Huang, X.Y.: A simple modeling and experiment on dynamic stability of a disk rotating in air. J. Struct. Stab. Dyn. 8(1), 41-60 (2008) · doi:10.1142/S0219455408002545
[11] Huang, X.Y., Wang, X., Yap, F.F.: Feedback control of rotating disk flutter in an enclosure. J. Fluids Struct. 19(7), 917-932 (2004) · doi:10.1016/j.jfluidstructs.2004.04.015
[12] Li, X.Y., Ding, H.J., Chen, W.Q.: Three-dimensional analytical solution for functionally graded magneto-electro-elastic circular plates subjected to uniform load. Compos. Struct. 83(4), 381-90 (2008) · doi:10.1016/j.compstruct.2007.05.006
[13] Dai, H.L., Dai, T., Yang, L.: Free vibration of a FGPM circular plate placed in a uniform magnetic field. Meccanic 48(10), 2339-2347 (2013) · Zbl 1293.74169 · doi:10.1007/s11012-013-9752-5
[14] Hu, Y.D., Wang, T.: Nonlinear resonance of a rotating circular plate under static loads in magnetic field. Chin. J. Mech. Eng. 28(6), 1277-1284 (2015) · doi:10.3901/CJME.2015.0720.097
[15] Hu, Y.D., Wang, T.: Nonlinear free vibration of a rotating circular plate under the static load in magnetic field. Nonlinear Dyn. 85(3), 1825-1835 (2016) · doi:10.1007/s11071-016-2798-x
[16] Hu, Y.D., Li, Z., Du, G.J., Wang, Y.N.: Magneto-elastic combination resonance of rotating circular plate with varying speed under alternating load. Int. J. Struct. Stab. Dyn. 18(3), 1850032 (2017) · Zbl 1535.74088
[17] Hu, Y.D., Piao, J.M., Li, W.Q.: Magneto-elastic dynamics and bifurcation of rotating annular plate. Chin. Phys. B 26(9), 269-279 (2017)
[18] Hu, Y.D., Li, W.Q.: Study on primary resonance and bifurcation of a conductive circular plate rotating in air-magnetic fields. Nonlinear Dyn. 93(2), 671-687 (2018) · doi:10.1007/s11071-018-4217-y
[19] Touzé, C., Thomas, L.O., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates. Part I: theory. J. Sound Vib. 258(4), 649-676 (2002) · doi:10.1006/jsvi.2002.5143
[20] Touzé, C., Thomas, L.O., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates. Part II: experiments. J. Sound Vib. 265(5), 1075-1101 (2003) · doi:10.1016/S0022-460X(02)01564-X
[21] Camier, C., Touzé, C., Thomas, O.: Non-linear vibrations of imperfect free-edge circular plates and shells. Euro. J. Mech. A-Solids 28(2), 500-515 (2009) · Zbl 1158.74374 · doi:10.1016/j.euromechsol.2008.11.005
[22] Touzé, C., Thomas, O., Amabili, M.: Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. Int. J. Nonlinear Mech. 46(1), 234-246 (2011) · doi:10.1016/j.ijnonlinmec.2010.09.004
[23] Sridhar, S., Mook, D.T., Nayfeh, A.H.: Nonlinear resonances in the forced responses of plates. Part I: symmetric response of circular plates. J. Sound Vib. 41(3), 359-373 (1975) · Zbl 0339.73038
[24] Hadian, J., Nayfeh, A.H.: Modal interaction in circular plates. J. Sound Vib. 142(2), 279-292 (1990) · doi:10.1016/0022-460X(90)90557-G
[25] Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in hinged-clamped beams. Nonlinear Dyn. 12(2), 129-154 (1997) · Zbl 0885.73030 · doi:10.1023/A:1008229503164
[26] Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20(2), 131-158 (1999) · Zbl 1006.74049 · doi:10.1023/A:1008310419911
[27] Feng, Z.H., Hu, H.Y.: Largest Lyapunov exponent and almost certain stability analysis of slender beams under a large linear motion of basement subject to narrowband parametric excitation. J Sound Vib. 257(4), 733-752 (2002) · doi:10.1006/jsvi.2002.5041
[28] Feng, Z.H., Hu, H.Y.: Principal parametric and three-to-one internal resonances of flexible beams undergoing a large linear motion. Acta Mech. Sinica 19(4), 355-364 (2003) · doi:10.1007/BF02487813
[29] Sahoo, B., Panda, L.N., Pohit, G.: Two-frequency parametric excitation and internal resonance of a moving viscoelastic beam. Nonlinear Dyn. 82(4), 1721-1742 (2015) · Zbl 1441.70009 · doi:10.1007/s11071-015-2272-1
[30] Nowinski, J.L.: Nonlinear transverse vibrations of a spinning disk. J. Appl. Mech. 31(1), 72-78 (1961) · doi:10.1115/1.3629573
[31] Liang, D.S., Wang, H.J., Chen, L.W.: Vibration and stability of rotating polar orthotropic annular disks subjected to a stationary concentrated transverse load. J. Sound. Vib. 250(5), 795-811 (2002) · doi:10.1006/jsvi.2001.3951
[32] Norouzi, H., Younesian, D.: Forced vibration analysis of spinning disks subjected to transverse loads. Int. J. Struct. Stab. Dyna. 15(3),1450049(2015) · Zbl 1359.74152
[33] Ambarcumian, S.A., Bagdasarin, G.E., Belubekian, M.V.: Magneto-elastic of thin shell and plate. Science, Moscow (1977)
[34] Moon, F.C.: Magneto-Solid Mechanics. Wiley, New York (1984)
[35] John, K.D.: Electromagnetic. McGraw-Hill, New York (1984)
[36] Dowell, E.H.: Aeroelasticity of plates and shells. Noordhoff International Publishing, Leyden (1975) · Zbl 0306.73039
[37] Chu, H.N.: Influence of large amplitudes on flexural vibrations of a thin circular cylindrical shell. J. Aerosp. Sci. 28(9), 685-692 (1961) · doi:10.2514/8.9150
[38] Reddy, J.N.: Theory and analysis of elastic plates and shell. Taylor & Francis, New York (2007)
[39] Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995) · Zbl 0418.70001 · doi:10.1002/9783527617586
[40] Korenev, B.G.: Bessel Functions and Their Applications. Taylor & Francis Inc, Landon and New York (2002) · Zbl 1065.33001
[41] Leissa, A.W.: Vibration of Plates. United States Government Printing Office, Washington, D. C. (1969)
[42] Joncs, D.G.: Handbook of Viscoelastic Vibration Damping. Wiley, New York (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.