×

Generation of mode 2 internal waves by the interaction of mode 1 waves with topography. (English) Zbl 1430.76099

Summary: Oceanic internal waves can be decomposed into an infinite set of modes, and the dominant internal mode 1 waves have been extensively investigated. Although mode 2 waves have been observed, they have not received comparable attention, especially the generation mechanisms. In this work, we examine the generation of mode 2 internal waves by the interaction of mode 1 waves with topography. We use a coupled linear long-wave theory with mode coupling through topography, combined with evolution using a Korteweg-de Vries model, to predict the mode 2 wave amplitude, in an ideal three-layer fluid model, in a smooth density stratification and in two realistic oceanic settings. We find that the mode 2 wave amplitude is usually much smaller than the incident mode 1 wave amplitude and is quite sensitive to the pycnocline thickness, topographic slope and background stratification.

MSC:

76B55 Internal waves for incompressible inviscid fluids
76B25 Solitary waves for incompressible inviscid fluids

References:

[1] Akylas, T. R. & Grimshaw, R. H. J.1992Solitary internal waves with oscillatory tails. J. Fluid Mech.242, 279-298. · Zbl 0754.76014
[2] Akylas, T. R., Grimshaw, R. H. J., Clarke, S. R. & Tabaei, A.2007Reflecting tidal wave beams and local generation of solitary waves in the ocean thermocline. J. Fluid Mech.593, 297-313. · Zbl 1151.76399
[3] Deepwell, D., Stastna, M., Carr, M. & Davies, P. A.2017Interaction of a mode-2 internal solitary wave with narrow isolated topography. Phys. Fluids29 (7), 076601.
[4] Farmer, D. M. & Smith, J. D.1980Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res. A27 (3), 239-254.
[5] Gerkema, T.2001Internal and interfacial tides: beam scattering and local generation of solitary waves. J. Mar. Res.59 (2), 227-255.
[6] Griffiths, S. D. & Grimshaw, R. H. J.2007Internal tide generation at the continental shelf modeled using a modal decomposition: two-dimensional results. J. Phys. Ocean.37, 428-451.
[7] Grimshaw, R.1981Evolution equations for long nonlinear internal waves in stratified shear flows. Stud. Appl. Maths65, 159-188. · Zbl 0492.76035
[8] Grimshaw, R.2007Internal solitary waves in a variable medium. Gesellschaft fur Angewandte Mathematik30, 96-109. · Zbl 1121.76015
[9] Grimshaw, R. & Helfrich, K. R.2018Internal solitary wave generation by tidal flow over topography. J. Fluid Mech.839, 387-407. · Zbl 1419.76113
[10] Grimshaw, R., Pelinovsky, E., Talipova, T. & Kurkina, A.2010Internal solitary waves: propagation, deformation and disintegration. Nonlinear Process. Geophys.17, 633-649.
[11] Helfrich, K. R. & Melville, W. K.1986On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech.167, 285-308.
[12] Helfrich, K. R. & Melville, W. K.2006Long nonlinear internal waves. Annu. Rev. Fluid Mech.38, 395-425. · Zbl 1098.76018
[13] Helland-Hansen, B. & Nansen, F.1909The Norwegian Sea — its Physical Oceanography based upon the Norwegian Researches 1900-1904. (Report on Norwegian Fishery and Marine Investigations, vol. II, No. 2). Det Mallingske Bogtrykkeri.
[14] Klymak, J. M. & Moum, J. N.2003Internal solitary waves of elevation advancing on a shoaling shelf. Geophys. Res. Lett.30 (20), doi:10.1029/2003GL017706.
[15] Lamb, K. G.2014Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech.46, 231-254. · Zbl 1297.76043
[16] Lamb, K. G. & Warn-Varnas, A.2015Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea. Nonlinear Process. Geophys.22 (3), 289-312.
[17] Liang, J., Du, T., Li, X. & He, M.2018Generation of mode-2 internal waves in a two-dimensional stratification by a mode-1 internal wave. Wave Motion83, 227-240. · Zbl 1469.76029
[18] Liang, J. & Li, X.2019Generation of second-mode internal solitary waves during winter in the northern South China Sea. Ocean Dyn.69 (3), 313-321.
[19] Liu, A. K., Chang, Y. S., Hsu, M.-K. & Liang, N. K.1998Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res.103 (C4), 7995-8008.
[20] Liu, Z., Grimshaw, R. & Johnson, E.2019The interaction of a mode-1 internal solitary wave with a step and the generation of mode-2 waves. Geophys. Astrophys. Fluid Dyn.113 (4), 327-347. · Zbl 1521.76066
[21] Liu, A. K., Su, F.-C., Hsu, M.-K., Kuo, N.-J. & Ho, C.-R.2013Generation and evolution of mode-two internal waves in the South China Sea. Cont. Shelf Res.59, 18-27.
[22] Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C.1997aA finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res.102 (C3), 5753-5766. · Zbl 0907.58089
[23] Marshall, J., Hill, C., Perelman, L. & Adcroft, A.1997bHydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res.102 (C3), 5733-5752.
[24] Maxworthy, T.1980On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J. Fluid Mech.96 (1), 47-64.
[25] Mehta, A. P., Sutherland, B. R. & Kyba, P. J.2002Interfacial gravity currents. II. Wave excitation. Phys. Fluids14 (10), 3558-3569. · Zbl 1185.76252
[26] Moum, J. N. & Smyth, W. D.2006The pressure disturbance of a nonlinear internal wave train. J. Fluid Mech.558, 153-177. · Zbl 1093.76514
[27] Ramp, S. R., Yang, Y. J., Reeder, D. B. & Bahr, F. L.2012Observations of a mode-2 nonlinear internal wave on the northern Heng-Chun Ridge south of Taiwan. J. Geophys. Res.117 (C3), doi:10.1029/2011JC007662.
[28] Shroyer, E. L., Moum, J. N. & Nash, J. D.2010Mode-2 waves on the continental shelf: Ephemeral components of the nonlinear internal wave field. J. Geophys. Res.115 (C7), doi:10.1029/2009JC005605.
[29] Shroyer, E. L., Moum, J. N. & Nash, J. D.2011Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res.116 (C3), doi:10.1029/2010JC006332.
[30] Terletska, K., Jung, K. T., Talipova, T., Maderich, V., Brovchenko, I. & Grimshaw, R.2016Internal breather-like wave generation by the second mode solitary wave interaction with a step. Phys. Fluids28, 116602.
[31] Vlasenko, V. I. & Hutter, K.2001Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Process. Geophys.8, 223-239.
[32] Yang, Y. J., Fang, Y. C., Chang, M.-H., Ramp, S. R., Kao, C.-C. & Tang, T. Y.2009Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. J. Geophys. Res.114 (C10), doi:10.1029/2009JC005318.
[33] Yang, Y. J., Fang, Y. C., Tang, T. Y. & Ramp, S. R.2010Convex and concave types of second baroclinic mode internal solitary waves. Nonlinear Process. Geophys.17 (6), 605-614.
[34] Yang, Y.-J., Tang, T. Y., Chang, M. H., Liu, A. K., Hsu, M.-K. & Ramp, S. R.2004Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE J. Ocean. Engng29 (4), 1182-1199.
[35] Yuan, C., Grimshaw, R. & Johnson, E.2018The propagation of second mode internal solitary waves over variable topography. J. Fluid Mech.836, 238-259. · Zbl 1419.76117
[36] Zhao, Z. & Alford, M. H.2006Source and propagation of internal solitary waves in the northeastern South China Sea. J. Geophys. Res.111 (C11), doi:10.1029/2006JC003644.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.