×

Prediction of mechanical properties in statistically inhomogeneous core-shell materials by second-order two-scale method. (English) Zbl 1430.74009

Summary: This paper develops a novel second-order two-scale (SOTS) method to predict the mechanical performance of statistically inhomogeneous core-shell materials. As for these kinds of materials, the sophisticated microscopic information of inclusions, including their shape, size, orientation, spatial distribution, volume fraction, and so on, leads to changes of the macroscopic mechanical properties. Firstly, the microscopic configuration for the core-shell structure with random distribution is briefly characterized. Secondly, the SOTS formulae for solving the mechanical problems are proposed, and the importance of the two-scale approximate solutions in pointwise sense is given. Then, the associated prediction algorithm based on the two-scale model is brought forward in detail. Finally, some numerical results for the effective properties of the materials with varying probability distribution models are calculated and compared with the data by analytical and experimental results. The comparison shows that the statistical second-order two-scale model is validated for determination of the mechanical properties of inhomogeneous core-shell materials and demonstrates its potential applications in actual engineering applications.

MSC:

74A25 Molecular, statistical, and kinetic theories in solid mechanics
74E35 Random structure in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Lauhon, L.J., Gudiksen, M.S., Wang, D., Lieber, C.M.: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57-61 (2002) · doi:10.1038/nature01141
[2] Goncharenko, A.V.: Optical properties of core-shell particle composites. I. Linear response. Chem. Phys. Lett. 386, 25-31 (2004) · doi:10.1016/j.cplett.2004.01.041
[3] Zhou, H.S., Honma, I., Haus, J.W., Sasabe, H., Komiyama, H.: Synthesis and optical properties of coated nanoparticle composites. J. Lumin. 70, 21-34 (1996) · doi:10.1016/0022-2313(96)00041-5
[4] Tzika, P.A., Boyce, M.C., Parks, D.M.: Micromechanics of deformation in particle-toughened polyamides. J. Mech. Phys. Solids. 48, 1893-1929 (2000) · Zbl 0947.74557 · doi:10.1016/S0022-5096(99)00096-4
[5] Porfiri, M., Gupta, N.: Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites. Compos. Part B-Eng. 40, 166-173 (2009) · doi:10.1016/j.compositesb.2008.09.002
[6] Tagliavia, G., Porfiri, M., Gupta, N.: Analysis of flexural properties of hollow-particle filled composites. Compos. Part B-Eng. 41, 86-93 (2010) · Zbl 1194.74352 · doi:10.1016/j.compositesb.2009.03.004
[7] Benjamin, A.Y., Amanda, M.K.F., Alexander, M.T., Aditya, K., Gaurav, S., Ertugrul, T., Laurent, P.: Effective elastic moduli of core-shell-matrix composites. Mech. Mater. 92, 94-106 (2016) · doi:10.1016/j.mechmat.2015.09.006
[8] Wang, X.M., Xiao, K.Q., Ye, L., Mai, Y.W., Wang, C.H., Rose, L.R.F.: Modelling of mechanical properties of core-shell rubber modified epoxies. Acta Mater. 48, 579-586 (2000) · doi:10.1016/S1359-6454(99)00342-0
[9] Ormaetxea, M., Forcada, J., Mugika, F., et al.: Ultimate properties of rubber and core-shell modified epoxy matrices with different chain flexibilities. J. Mater. Sci. 36, 845-852 (2001) · doi:10.1023/A:1004826529065
[10] Perez-Carrillo, L.A., Puca, M., Rabelero, M., et al.: Effect of particle size on the mechanical properties of polystyrene and poly (butyl acrylate) core/shell polymers. Polymer 48, 1212-1218 (2007) · doi:10.1016/j.polymer.2007.01.001
[11] Han, F., Cui, J.Z., Yu, Y.: The statistical second-order two-scale method for mechanical properties of statistically inhomogeneous materials. Int. J. Numer. Meth. Eng. 84, 972-988 (2010) · Zbl 1202.74042 · doi:10.1002/nme.2928
[12] Yin, H.M., Paulino, G.H., Buttlar, W.G., et al.: Micromechanics-based thermoelastic model for functionally graded particulate materials with particle interactions. J. Mech. Phys. Solids 55, 132-160 (2007) · Zbl 1171.74004 · doi:10.1016/j.jmps.2006.05.002
[13] Shim, V.P.W., Yang, L.M., Liu, J.F., et al.: Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. Int. J. Impact Eng. 32, 525-540 (2005) · doi:10.1016/j.ijimpeng.2005.03.006
[14] Zheng, G.Q., Yang, W., Huang, L., et al.: Flow-induced fiber orientation in gas-assisted injection molded part. Mater. Lett. 61, 3436-3439 (2007) · doi:10.1016/j.matlet.2006.11.085
[15] Schmauder, S., Weber, U.: Modelling of functionally graded materials by numerical homogenization. Arch. Appl. Mech. 71(2), 182-192 (2001) · Zbl 0978.74531 · doi:10.1007/s004190000124
[16] Yang, Z.Q., Cui, J.Z., Sun, Y., Yang, Z.H.: Thermo-mechanical coupling analysis of statistically inhomogeneous porous materials with surface radiation by second-order two-scale method. Compos. Struct. 182(15), 362-377 (2017)
[17] Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structure. North-Holland, Amsterdam (1978) · Zbl 0404.35001
[18] Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992) · Zbl 0768.73003
[19] Shabana, Y.M., Noda, N.: Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method. Int. J. Solids Struct. 45(11-12), 3494-3506 (2008) · Zbl 1169.74534 · doi:10.1016/j.ijsolstr.2008.02.012
[20] Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functions. Springer, Berlin (1994) · Zbl 0838.35001 · doi:10.1007/978-3-642-84659-5
[21] Yang, D.S., Zhang, H.W., Zhang, S., Lu, M.K.: A multiscale strategy for thermo-elastic plastic stress analysis of heterogeneous multiphase materials. Acta Mech. 226(5), 1549-1569 (2015) · Zbl 1329.74050 · doi:10.1007/s00707-014-1269-z
[22] Sajad, A., Damiano, P.: Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int. J. Mech. Sci. 77, 249-262 (2013) · doi:10.1016/j.ijmecsci.2013.10.003
[23] Ryoichi, C., Yoshihiro, S.: Optimisation of material composition of functionally graded materials based on multiscale thermoelastic analysis. Acta Mech. 223(5), 891-909 (2012) · Zbl 1401.74231 · doi:10.1007/s00707-011-0610-z
[24] Yang, Z.Q., Sun, Y., Cui, J.Z., Li, X.: A multiscale algorithm for heat conduction-radiation problems in porous materials with quasi-periodic structures. Commun. Comput. Phys. 24, 204-233 (2018) · Zbl 1488.65479
[25] Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M.L., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A/Solids 49, 396-407 (2015) · doi:10.1016/j.euromechsol.2014.08.010
[26] Miedzińska, D., Panowicz, R., Jóźwicki, P.: Multiscale modeling method for chosen functionally graded material. Solid State Phenom. 199, 593-598 (2013) · doi:10.4028/www.scientific.net/SSP.199.593
[27] Vel, S.S., Goupee, A.J.: Multiscale thermoelastic analysis of random heterogeneous materials: Part I: microstructure characterization and homogenization of material properties. Comput. Mater. Sci. 48, 22-38 (2010) · doi:10.1016/j.commatsci.2009.11.015
[28] Vel, S.S., Goupee, A.J.: Multiscale thermoelastic analysis of random heterogeneous materials Part II: direct micromechanical failure analysis and multiscale simulations. Comput. Mater. Sci. 48, 39-53 (2010) · doi:10.1016/j.commatsci.2009.11.015
[29] Aboudi, J., Pindera, M.J., Arnold, S.M.: Higher-order theory for functionally graded materials. Compos. Part B-Eng 30, 777-832 (1999) · doi:10.1016/S1359-8368(99)00053-0
[30] Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Eng. 54, 1235-1260 (2002) · Zbl 1058.74070 · doi:10.1002/nme.541
[31] Sokołowski, D., Kaminski, M.: Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic interface defects. Acta Mech., to appear (2018)
[32] Sokołowski, D., Kaminski, M.: Computational homogenization of carbon/polymer composites with stochastic interface defects. Compos. Struct. 183, 434-449 (2018) · doi:10.1016/j.compstruct.2017.04.076
[33] Otero, F., Oller, S., Martinez, X.: Multiscale computational homogenization: review and proposal of a new enhanced-first-order method. Arch. Comput. Methods Eng. 25, 479-505 (2018) · Zbl 1392.74079 · doi:10.1007/s11831-016-9205-0
[34] Anthoine, A.: Second-order homogenization of functionally graded materials. Int. J. Solids Struct. 47(11-12), 1477-1489 (2010) · Zbl 1194.74280 · doi:10.1016/j.ijsolstr.2010.02.004
[35] Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metall. 21(5), 571-574 (1973) · doi:10.1016/0001-6160(73)90064-3
[36] Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213-222 (1965) · doi:10.1016/0022-5096(65)90010-4
[37] Chou, T.W., Nomura, S., Taya, M.: A self-consistent approach to the elastic stiffness of short-fibre composites. J. Compos. Mater. 14, 178-188 (1980) · doi:10.1177/002199838001400301
[38] Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125-3131 (1962) · Zbl 0111.41401 · doi:10.1063/1.1728579
[39] Yu, X.G., Cui, J.Z.: The prediction on mechanical properties of 4-step braided composites via two-scale method. Compos. Sci. Technol. 67, 471-480 (2007) · doi:10.1016/j.compscitech.2006.08.028
[40] Zhang, L., Cao, L.Q., Wang, X.: Multiscale finite element algorithm of the eigenvalue problems for the elastic equations in composite materials. Comput. Method Appl. Mech. Eng. 198, 2539-2554 (2009) · Zbl 1228.74099 · doi:10.1016/j.cma.2009.03.015
[41] Bourgat, J.F.: Numerical experiments of the homogenization method for operators with periodic coefficients. In: Computing Methods in Applied Sciences and Engineering (Proc. Third Internat. Sympos., Versailles, 1977), 330-356, Lecture Notes in Math., 704, Springer, Berlin (1979) · Zbl 0405.65062
[42] Allaire, G., Habibi, Z.: Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete Contin. Dyn. B 18(1), 1-36 (2013) · Zbl 1270.35053
[43] Yu, Y., Cui, J.Z., Han, F.: An effective computer generation method for the composites with random distribution of large numbers of heterogeneous grains. Compos. Sci. Technol. 68, 2543-2550 (2008) · doi:10.1016/j.compscitech.2008.05.013
[44] Han, F., Cui, J.Z., Yu, Y.: The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites. Interact. Multiscale Mech. 1(2), 231-250 (2008) · doi:10.12989/imm.2008.1.2.231
[45] Wu, Y.T., Cui, J.Z., Nie, Y.F., Zhang, Y.: Predicting effective elastic moduli and strength of ternary blends with core-shell structure by second-order two-scale method. Comput. Mater. Con. 42(3), 205-225 (2014)
[46] Han, F., Cui, J.Z., Yu, Y.: The statistical second-order two-scale method for thermomechanical properties of statistically inhomogeneous materials. Comput. Mater. Sci. 46(3), 654-659 (2009) · doi:10.1016/j.commatsci.2009.03.026
[47] Yang, Z.H., Cui, J.Z., Nie, Y.F., et al.: Dynamic thermo-mechanical coupled simulation of statistically inhomogeneous materials by statistical second-order two-scale method. Acta Mech. Sin. 31(4), 762-776 (2015) · Zbl 1345.74004 · doi:10.1007/s10409-015-0483-9
[48] Duan, H.L., Jiao, Y., Yi, X., Huang, Z.P., Wang, J.: Solutions of inhomogeneity problems with graded shells and application to core-shell nanoparticles and composites. J. Mech. Phys. Solids 54, 1401-1425 (2006) · Zbl 1120.74376 · doi:10.1016/j.jmps.2006.01.005
[49] Li, Y.Y., Cui, J.Z.: The multiscale computational method for mechanics parameters of the materials with random distribution of multiscale grains. Compos. Sci. Technol. 65, 1447-1458 (2005) · doi:10.1016/j.compscitech.2004.12.016
[50] Wang, X.M., Xiao, K.Q., Ye, L., et al.: Modelling of mechanical properties of core-shell rubber modified epoxies. Acta Mater. 48, 579-586 (2000) · doi:10.1016/S1359-6454(99)00342-0
[51] Gupta, N., Kumar Gupta, S., Mueller, B.J.: Analysis of a functionally graded particulate composite under flexural loading conditions. Mater. Sci. Eng. A-Struct. 485, 439-447 (2008) · doi:10.1016/j.msea.2007.08.020
[52] Yu, Y., Cui, J.Z., Han, F.: The statistical second-order two-scale analysis method for heat conduction performances of the composite structure with inconsistent random distribution. Comput. Mater. Sci. 46, 151-161 (2009) · doi:10.1016/j.commatsci.2009.02.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.