×

Quasi-symmetries of determinantal point processes. (English) Zbl 1430.60045

Summary: The main result of this paper is that determinantal point processes on \(\mathbb{R}\) corresponding to projection operators with integrable kernels are quasi-invariant, in the continuous case, under the group of diffeomorphisms with compact support (Theorem 1.4); in the discrete case, under the group of all finite permutations of the phase space (Theorem 1.6). The Radon-Nikodym derivative is computed explicitly and is given by a regularized multiplicative functional. Theorem 1.4 applies, in particular, to the sine-process, as well as to determinantal point processes with the Bessel and the Airy kernels; Theorem 1.6 to the discrete sine-process and the Gamma kernel process. The paper answers a question of G. Olshanski [Adv. Math. 226, No. 3, 2305–2350 (2011; Zbl 1218.60004)].

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60B10 Convergence of probability measures
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)

Citations:

Zbl 1218.60004

References:

[1] Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (2001). Uniform spanning forests. Ann. Probab.29 1-65. · Zbl 1016.60009
[2] Borodin, A., Okounkov, A. and Olshanski, G. (2000). Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc.13 481-515. · Zbl 0938.05061
[3] Borodin, A. and Olshanski, G. (2005). Random partitions and the gamma kernel. Adv. Math.194 141-202. · Zbl 1128.60301
[4] Borodin, A. and Rains, E. M. (2005). Eynard-Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys.121 291-317. · Zbl 1127.82017
[5] Bufetov, A. I. (2012). On multiplicative functionals of determinantal processes. Uspekhi Mat. Nauk 67 177-178. Translation in Russian Math. Surveys 67 (2012) 181-182. · Zbl 1252.60047 · doi:10.4213/rm9460
[6] Bufetov, A. I. (2012). On the Vershik-Kerov conjecture concerning the Shannon-McMillan-Breiman theorem for the Plancherel family of measures on the space of Young diagrams. Geom. Funct. Anal.22 938-975. · Zbl 1254.05024
[7] Bufetov, A. I. (2013). Infinite determinantal measures. Electron. Res. Announc. Math. Sci.20 12-30. · Zbl 1287.60064
[8] Bufetov, A. I. (2015). On the action of the diffeomorphism group on determinantal measures. Uspekhi Mat. Nauk 70 175-176. Translation in Russian Math. Surveys 70 (2015) 953-954. · Zbl 1344.60048
[9] Camilier, I. and Decreusefond, L. (2010). Quasi-invariance and integration by parts for determinantal and permanental processes. J. Funct. Anal.259 268-300. · Zbl 1203.60050
[10] Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, 2nd ed. Springer, New York. · Zbl 1159.60003
[11] Ghosh, S. Rigidity and tolerance in Gaussian zeros and Ginibre eigenvalues: Quantitative estimates. Available at arXiv:1211.3506. · Zbl 1405.60067
[12] Ghosh, S. (2015). Determinantal processes and completeness of random exponentials: The critical case. Probab. Theory Related Fields 163 643-665. · Zbl 1334.60083
[13] Ghosh, S. and Peres, Y. (2017). Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues. Duke Math. J.166 1789-1858. · Zbl 1405.60067
[14] Hough, J. B., Krishnapur, M., Peres, Y. and Virág, B. (2006). Determinantal processes and independence. Probab. Surv.3 206-229. · Zbl 1189.60101
[15] Its, A. R., Izergin, A. G., Korepin, V. E. and Slavnov, N. A. (1990). Differential equations for quantum correlation functions. Internat. J. Modern Phys. B 4 1003-1037. · Zbl 0719.35091
[16] Kallenberg, O. (1976). Random Measures. Akademie-Verlag, Berlin. · Zbl 0345.60032
[17] Kolmogoroff, A. (1977). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin. · JFM 59.1152.03
[18] Lenard, A. (1975). States of classical statistical mechanical systems of infinitely many particles. I. Arch. Ration. Mech. Anal.59 219-239.
[19] Lyons, R. (2003). Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci.98 167-212. · Zbl 1055.60003
[20] Lytvynov, E. (2002). Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density. Rev. Math. Phys.14 1073-1098. · Zbl 1041.81076
[21] Macchi, O. (1975). The coincidence approach to stochastic point processes. Adv. in Appl. Probab.7 83-122. · Zbl 0366.60081
[22] Olshanski, G. (2011). The quasi-invariance property for the Gamma kernel determinantal measure. Adv. Math.226 2305-2350. · Zbl 1218.60004
[23] Reed, M. and Simon, B. (1980). Methods of Modern Mathematical Physics. I: Functional Analysis, 2nd ed. Academic Press, New York. · Zbl 0459.46001
[24] Rohlin, V. A. (1949). On the fundamental ideas of measure theory. Mat. Sb. (N.S.) 25 107-150. · Zbl 0033.16904
[25] Shirai, T. and Takahashi, Y. (2000). Fermion process and Fredholm determinant. In Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999). Int. Soc. Anal. Appl. Comput.7 15-23. Kluwer Academic, Dordrecht. · Zbl 1036.60045
[26] Shirai, T. and Takahashi, Y. (2003). Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal.205 414-463. · Zbl 1051.60052
[27] Shirai, T. and Takahashi, Y. (2003). Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties. Ann. Probab.31 1533-1564. · Zbl 1051.60053
[28] Simon, B. (2011). Trace Ideals and Their Applications, 2nd ed. Mathematical Surveys and Monographs 120. American Mathematical Society, Providence, RI.
[29] Sinaĭ, Ya. G. (1982). Theory of Phase Transitions: Rigorous Results. International Series in Natural Philosophy 108. Pergamon Press, Oxford. Translated from the Russian by J. Fritz, A. Krámli, P. Major and D. Szász.
[30] Soshnikov, A. (2000). Determinantal random point fields. Uspekhi Mat. Nauk 55 107-160. · Zbl 0991.60038
[31] Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and the Airy kernel. Comm. Math. Phys.159 151-174. · Zbl 0789.35152
[32] Tracy, C. A. and Widom, H. (1994). Level spacing distributions and the Bessel kernel. Comm. Math. Phys.161 289-309. · Zbl 0808.35145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.