×

Head and tail speeds of mean curvature flow with forcing. (English) Zbl 1430.35125

Summary: In this paper, we investigate the large time behavior of interfaces moving with motion law \(V = -\,\kappa + g(x)\), where \(g\) is positive, Lipschitz and \({\mathbb{Z}}^n\)-periodic. We show that the behavior of the interface can be characterized by its head and tail speeds \({\bar{s}}\) and \(\underline{s} \), which only depend on its overall direction of propagation \(\nu \). We discuss the large time behavior of the moving interface in terms of \({\bar{s}}\) and \(\underline{s} \), which is shown to vary continuously in \(\nu \). In the laminar setting we show that when \({\bar{s}}>\underline{s}\) there exists an unbounded stationary solution as well as localized traveling waves with different speeds.

MSC:

35K55 Nonlinear parabolic equations
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
53E10 Flows related to mean curvature
35R35 Free boundary problems for PDEs

References:

[1] Armstrong, S.; Cardaliaguet, P., Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions, J. Eur. Math. Soc., 20, 4, 797-864 (2018) · Zbl 1392.35031 · doi:10.4171/JEMS/777
[2] Athanasopoulos, I.; Caffarelli, L.; Salsa, S., Regularity of the free boundary in parabolic phase-transition problems, Acta Math., 176, 245-282 (1996) · Zbl 0891.35164 · doi:10.1007/BF02551583
[3] Caffarelli, La; Monneau, R., Counter-example in three dimension and homogenization of geometric motions in two dimension, Arch. Ration. Mech. Anal., 212, 503-574 (2014) · Zbl 1293.35026 · doi:10.1007/s00205-013-0712-y
[4] Caffarelli, La; Souganidis, Pe; Wang, L., Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Commun. Pure Appl. Math., 58, 319-361 (2005) · Zbl 1063.35025 · doi:10.1002/cpa.20069
[5] Cardaliaguet, P.; Lions, P-L; Souganidis, Pe, A discussion about the homogenization of moving interfaces, J. Math. Pures Appl., 91, 4, 339-363 (2009) · Zbl 1180.35070 · doi:10.1016/j.matpur.2009.01.014
[6] Cesaroni, A.; Novaga, M., Long-time behavior of the mean curvature flow with periodic forcing, Commun. Partial Differ. Equ., 38, 5, 780-801 (2013) · Zbl 1288.35071 · doi:10.1080/03605302.2013.771508
[7] Choi, Sunhi.; Jerison, David; Kim, Inwon., Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface, American Journal of Mathematics, 129, 2, 527-582 (2007) · Zbl 1189.35384 · doi:10.1353/ajm.2007.0008
[8] Choi, Sunhi; Kim, Inwon; Lee, Ki-Ahm, Homogenization of Neumann boundary data with fully nonlinear operator, Analysis & PDE, 6, 4, 951-972 (2013) · Zbl 1276.35023 · doi:10.2140/apde.2013.6.951
[9] Crandall, Mg; Evans, Lc; Gariepy, R., Optimal Lipschitz extensions and the infinity Laplacian, Cal. Var. Partial Differ. Equ., 13, 2, 123-139 (2001) · Zbl 0996.49019 · doi:10.1007/s005260000065
[10] Crandall, Mg; Ishii, H.; Lions, P-L, User’s guide to viscosity solutions of second order partial differential equations., Bull. Am. Math. Soc. (N.S.), 27, 1, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[11] Dirr, N.; Karali, G.; Yip, Nk, Pulsating wave for mean curvature flow in inhomogeneous medium, Eur. J. Appl. Math., 19, 6, 661-699 (2008) · Zbl 1185.53076 · doi:10.1017/S095679250800764X
[12] Evans, L.C.: Partial Differential Equations, Second Edition. Volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2010). https://bookstore.ams.org/gsm-19-r/ · Zbl 1194.35001
[13] Evans, Lc; Soner, Hm; Souganidis, Pe, Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45, 1097-1123 (1992) · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[14] Feldman, Wm, Homogenization of the oscillating Dirichlet boundary condition in general domains, J. Math. Pures Appl., 101, 5, 599-622 (2014) · Zbl 1293.35109 · doi:10.1016/j.matpur.2013.07.003
[15] Kim, I., Homogenization of the free boundary velocity, Arch. Ration. Mech. Anal., 185, 1, 69-103 (2007) · Zbl 1162.35011 · doi:10.1007/s00205-006-0035-3
[16] Kim, I., Homogenization of a model problem on contact angle dynamics, Commun. Partial Differ. Equ., 33, 7, 1235-1271 (2008) · Zbl 1161.35312 · doi:10.1080/03605300701518273
[17] Kim, I., Kwon, D.: On mean curvature flow with forcing. Preprint. arXiv:1512.07549 · Zbl 1439.35242
[18] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley, New York, 1974. https://www.worldcat.org/title/uniform-distribution-of-sequences/oclc/762649 · Zbl 0281.10001
[19] Lions, Pierre-Louis; Souganidis, Panagiotis E., Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 22, 5, 667-677 (2005) · Zbl 1135.35092 · doi:10.1016/j.anihpc.2004.10.009
[20] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity Laplacian, J. Am. Math. Soc, 22, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[21] Požár, N., Homogenization of the Hele-Shaw problem in periodic spatiotemporal media, Arch. Ration. Mech. Anal., 217, 1, 155-230 (2015) · Zbl 1329.35253 · doi:10.1007/s00205-014-0831-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.