×

Dynamics of a vibro-impact system by the global analysis method in parameter-state space. (English) Zbl 1430.34054

Summary: The global analysis method in parameter-state space for achieving both the distribution and the transition rule of periodic motions and the distribution rule of the multiple motions coexistence of the vibro-impact system is developed. A nonlinear dynamic model in a system of vibro-impact with asymmetric clearances is researched by the new method. Three grazing motions and relevant conditions have been discussed. The distribution and the transition rule of periodic motions are analyzed. The influence of the grazing and saddle-node bifurcation during the change in the left and the right gaps are demonstrated. The distribution of subharmonic motions is illustrated. The coexistence of multiple motions which exist at the junction of periodic motions within the motion-sensitive areas is researched by the global analysis method in parameter-state space, and the distributions of periodic motions and the multiple motions coexistence are illustrated. The transition of the multiple motions coexistence with the guide of the global distribution of the motions is further analyzed by the evolution of the attractors and the corresponding attracting domains. The results contribute a lot to the study of the transition and the control of the motions.

MSC:

34C23 Bifurcation theory for ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
37G10 Bifurcations of singular points in dynamical systems
Full Text: DOI

References:

[1] Shaw, S.W., Holmes, P.: Periodically forced linear oscillator with impacts: chaos and long-period motions. Phys. Rev. Lett. 51(8), 623-626 (1983)
[2] Thompson, J.M.T., Ghaffari, R.: Chaos after period-doubling bifurcations in the resonance of an impact oscillator. Phys. Lett. A 91(1), 5-8 (1982)
[3] Janin, O., Lamarque, C.H.: Stability of singular periodic motions in a vibro-impact oscillator. Nonlinear Dyn. 28(3), 231-241 (2002) · Zbl 1013.70014
[4] Li, Q.H., Lu, Q.S.: Coexisting periodic orbits in vibro-impacting dynamical systems. Appl. Math. Mech. 24(3), 234-244 (2003) · Zbl 1043.70011
[5] Ding, W., Li, G., Luo, G., et al.: Torus T-2 and its locking, doubling, chaos of a vibro-impact system. J. Frankl. Inst. 349(1), 337-348 (2012) · Zbl 1285.70008
[6] Yue, Y., Xie, J., Gao, X.: Determining Lyapunov spectrum and Lyapunov dimension based on the Poincaré map in a vibro-impact system. Nonlinear Dyn. 69(3), 743-753 (2012) · Zbl 1298.70032
[7] Li, G., Ding, W., Wu, S.: Global behavior of vibro-impact system with multiple non-smooth mechanical Factors. J. Comput. Nonlinear Dyn. 12(6), 061004-1-061004-11 (2017)
[8] Li, G., Ding, W.: Global Behavior of a vibro-impact system with asymmetric clearances. J. Sound Vib. 423, 180-194 (2018)
[9] Xiao-Juan, W., Ning-Zhou, L., Wang-Cai, D., et al.: Model-free chaos control based on AHGSA for a vibro-impact system. Nonlinear Dyn. 94, 845-855 (2018)
[10] Czolczynski, K., Kapitaniak, T.: On the existence of a stable periodic solution of an impacting oscillator with two fenders. Int. J. Bifurc. Chaos 14(9), 3115-3134 (2004) · Zbl 1140.70469
[11] Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145(2), 279-297 (1991)
[12] Whiston, G.S.: Singularities in vibro-impact dynamics. J. Sound Vib. 152(3), 427-460 (1992) · Zbl 0925.70152
[13] Chin, W., Ott, E., Nusse, H.E., et al.: Universal behavior of impact oscillators near grazing incidence. Phys. Lett. A 201(2-3), 197-204 (1995) · Zbl 1020.70506
[14] Lamba, H., Budd, C.J.: Scaling of Lyapunov exponents at non-smooth bifurcations. Phys. Rev. E. 50(1), 84-90 (1994)
[15] Virgin, L.N., Begley, C.J.: Grazing bifurcations and basins of attraction in an impact-friction oscillator. Phys. D Nonlinear Phenom. 130(1-2), 43-57 (1999) · Zbl 0964.70019
[16] Pavlovskaia, E., Ing, J., Wiercigroch, M., et al.: Complex dynamics of bilinear oscillator close to grazing. Int. J. Bifurc. Chaos. 20(11), 3801-3817 (2010)
[17] Shan, Y., Jinchen, J., Shuning, D., et al.: Neimark-Sacker bifurcations near degenerate grazing point in a two degree-of-freedom impact oscillator. J. Comput. Nonlinear Dyn. 13(6), 111007-1-111007-8 (2018)
[18] Chillingworth, D.R.J.: Discontinuity geometry for an impact oscillator. Dyn. Syst. 17(4), 389-420 (2002) · Zbl 1048.34025
[19] Humphries, N., Piiroinen, P.T.: A discontinuity-geometry view of the relationship between saddle-node and grazing bifurcations. Phy. D 241(22), 1911-1918 (2012)
[20] Jiang, H., Wiercigroch, M.: Geometrical insight into non-smooth bifurcations of a soft impact oscillator. J. Appl. Math. 81(4), 662-678 (2016) · Zbl 1426.70024
[21] Luo, A.C.J., Chen, L.D.: Arbitrary periodic motions and grazing switching of a forced piecewise-linear, impacting oscillator. ASME J. Vib. Acoust. 129, 276-284 (2007)
[22] Wagg, D.J.: Periodic sticking motion in a two-degree-freedom impact oscillator. Int. J. Bifurc. Chaos 40(8), 1076-1087 (2005) · Zbl 1349.74283
[23] Nordmark, A.B., Piiroinen, P.T.: Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dyn. 58(1-2), 85-106 (2009) · Zbl 1183.70038
[24] Ma, Y., Agarwal, M., Banerjee, S.: Border collision bifurcations in a soft impact system. Phys. Lett. A 354(4), 281-287 (2006)
[25] Gritli, Hassène, Belghith, S.: Diversity in the nonlinear dynamic behavior of a one-degree-of-freedom impact mechanical oscillator under OGY-based state-feedback control law: order, chaos and exhibition of the border-collision bifurcation. Mech. Mach. Theory 124, 1-41 (2018)
[26] Du, Z., Zhang, W.: Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Comput. Math. Appl. 50(3-4), 445-458 (2005) · Zbl 1097.37043
[27] Xu, W., Feng, J., Rong, H.: Melnikov’s method for a general nonlinear vibro-impact oscillator. Nonlinear Anal. 71(1-2), 418-426 (2009) · Zbl 1176.34052
[28] Hsu, C.S., Guttalu, R.S.: An unraveling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings. J. Appl. Mech. 47(4), 940-948 (1980) · Zbl 0452.58020
[29] Hsu, C.S.: A generalized theory of cell-to-cell mapping for nonlinear dynamical systems. ASME J. Appl. Mech. 48(3), 634-642 (1981) · Zbl 0482.70017
[30] Hsu, C.S.: Global analysis by cell mapping. Int. J. Bifurc. Chaos 2(4), 727-771 (1992) · Zbl 0870.58034
[31] Zufiria, P.J., Guttalu, R.S.: The adjoining cell mapping and its recursive unraveling, part I: description of adaptive and recursive algorithms. Nonlinear Dyn. 4(3), 207-226 (1993)
[32] Guttalu, R.S., Zufiria, P.J.: The adjoining cell mapping and its recursive unraveling, part II: application toselected problems. Nonlinear Dyn. 4(4), 309-336 (1993)
[33] Guder, R., Dellnitz, M., Kreuzer, E.: An adaptive method for the approximation of the generalized cell mapping. Chaos Solitons Fractals 8(4), 525-534 (1997) · Zbl 0935.37055
[34] Xiong, F.R., Qin, Z.C., Ding, Q., et al.: Parallel cell mapping method for global analysis of high-dimensional nonlinear dynamical systems. J. Appl. Mech. 82(11), 111010-1-111010-12 (2015)
[35] Liu, X., Hong, L., Jiang, J., et al.: Global dynamics of fractional-order systems with an extended generalized cell mapping method. Nonlinear Dyn. 83(3), 1419-1428 (2016)
[36] Gao, X.J., Li, Y.H., Yue, Y., et al.: Symmetric/asymmetric bifurcation behaviours of a bogie system. J. Sound Vib. 332(4), 936-951 (2013)
[37] Liu, Y., Pavlovskaia, E., Wiercigroch, M., et al.: Forward and backward motion control of a vibro-impact capsule system. Int. J. Nonlinear Mech. 70, 30-46 (2015)
[38] Luo, A.C.J., O’Connor, D.: Periodic motions and chaos with impacting chatter and stick in a gear transmission system. Int. J. Bifurc. Chaos 19(6), 0902385 (2014)
[39] Huang, Z.L., Liu, Z.H., Zhu, W.Q.: Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations. J. Sound Vib. 275(1), 223-40 (2004)
[40] Xie, J.: A mathematical model for the impact hammer and it’s global bifurcations. Acta Mech. Sin. 13(4), 456-463 (1997)
[41] Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Mapping and Applications. Lecture Notes in Applied and Computational Mechanics, vol. 43. Springer, Berlin (2009) · Zbl 1345.70001
[42] Awrejcewicz, J., Lamarque, C.H.: Bifurcation and Chaos in Nonsmooth Mechanical Systems, vol. 45. World Scientific, Singapore (2003) · Zbl 1067.70001
[43] Luo, A.C.J., Yu, G.: Vibro-Impact Dynamics. Wiley, London (2013) · Zbl 1345.70002
[44] Leine, R.I., Campen, D.H.V., Vrande, B.L.V.D.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23(2), 105-164 (2000) · Zbl 0980.70018
[45] Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004) · Zbl 1068.70003
[46] Hsu, C.S.: Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems. Springer, Berlin (1987) · Zbl 0632.58002
[47] Sun, J.Q., Xiong, F.R., Oliver, S.: Cell Mapping Methods Algorithmic Approaches and Applications. Springer, Berlin (2019) · Zbl 1415.37005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.