×

Derived noncommutative schemes, geometric realizations, and finite dimensional algebras. (English. Russian original) Zbl 1430.14006

Russ. Math. Surv. 73, No. 5, 865-918 (2018); translation from Usp. Mat. Nauk 73, No. 5, 123-182 (2018).
In this survey, noncommutative algebraic geometry is interpreted as the category of quasi-coherent sheaves on an affine noncommutative scheme, having in view the category \(\operatorname{Mod}_A\) of (right) \(A\)-modules. That is, one considers directly the categories of sheaves of modules as this is an effective way to study algebraic varieties in the ordinary commutative situation. The author emphasises that quasi-coherent sheaves are independent of the choice of the topology on schemes, they are sheaves in any natural topology, and so they are claimed to be the objects that best reflect the algebraic structures of schemes. The next task is to glue together the noncommutative affine schemes, and there are different possibilities. The author finds that the most fruitful possibility is connected with the category of sheaves together with natural generalizations dictated by homological algebra. This leads to the derived category of quasi-coherent sheaves and the category of perfect complexes on a noncommutative scheme.
Let \(X\) be a scheme over a field \(\Bbbk\) that is quasi-compact, quasi-separated, has a finite covering by affine schemes whose intersections are affine with the same properties. To \(X\) is associated the unbounded derived category of complexes of \(\mathcal O_X\)-modules with quasi-coherent cohomology \(\mathcal D_\text{Qcoh}.\) It is proved that this category has enough compact objects, and that the triangulated subcategory of compact objects coincides with the category \(\mathit{Perf}-X\) of perfect complexes: A complex is perfect if it is locally isomorphic to a bounded complex of locally free sheaves of finite type. This category can be generated by a single object, called a classical generator. Then the minimal full triangulated subcategory of \(\mathit{Perf}-X\) containing this object and closed under taking direct summands coincides with the whole category \(\mathit{Perf}-X\).
Given the existence of a classical generator \(E\in\mathit{Perf}-X,\) the author gives a new view on the derived category \(\mathcal D_\text{Qcoh}(X),\) as well as the triangulated category \(\mathit{Perf}-X\). With this, \(\mathcal D_\text{Qcoh}(X)\) is equivalent to the unbounded derived category of differential graded (DG) modules \(D(\mathcal R)\) over some differential graded algebra \(\mathcal R\), and the triangulated category of perfect complexes \(\mathit{Perf}-X\) is equivalent to the category of perfect DG modules \(\mathit{Perf}-\mathcal R.\) The algebra \(\mathcal R\) is given as the DG algebra if endomorphisms \(\operatorname{End}(E)\) of the given generator as its lift to a differential graded category \(\mathscr{P}\mathit{erf}-X.\) This is in some sense the game-changer in this paper: The differential graded category \(\mathscr{P}\mathit{erf}-X\) is a natural enhancement of the category \(\mathit{Perf}-X,\) in particular \(\mathit{Perf}-X\) is equivalent to the homotopy category \(\mathcal H^0(\mathscr{P}\mathit{erf}-X).\) A differential graded (DG) category \(\mathcal A\) is a category whose morphisms have the structure of complexes of \(\Bbbk\)-vector spaces. Passing to their zero cohomology spaces, one obtain a \(\Bbbk\)-linear category \(\mathcal H^0(\mathcal A)\) with the same set of objects, called the homotopy category for the DG category \(\mathcal A.\) With an equivalence \(\epsilon:\mathcal H^0(\mathcal A)\overset\sim\rightarrow\mathcal T,\;(\mathcal A,\epsilon)\) is called a DG enhancement for the category \(\mathcal T.\)
The triangulated category \(\mathcal D_\text{Qcoh}(X)\) has several natural enhancements, all naturally quasi-equivalent to each other. A convenient model can be chosen from the xlass of quasi-equivalent DG categories. A DG enhancement of the category \(\mathcal D_\text{Qcoh}(X)\) induces a DG enhancement of the triangulated subcategory \(\mathit{Perf}-X\), and this is denoted \(\mathscr P\mathit{erf}-X.\)
It is proved that \(\mathscr P\mathit{erf}-X\) is quasi-equivalent to a category of the form \(\mathscr P\mathit{erf}-\mathcal R\) with \(\mathcal R\) the DG algebra of endomorphisms of some generator \(E\in\mathscr P\mathit{erf}-X.\) Note that when \(X\) is quasi-compact and quasi-separated, \(\mathcal R\) is cohomologically bounded; it has only a finite number of non-trivial cohomology spaces. This leads to the following definition, stated verbatim:
By a derived noncommutative scheme \(\mathscr X\) ia meant a \(\Bbbk\)-linear DG category of the form \(\mathit{Perf}-\mathcal R,\) where \(\mathcal R\) is a cohomologically bounded DG algebra over \(\Bbbk.\) \(D(\mathcal R)\) is called the derived category of quasi-coherent sheaves on this noncommutative scheme, and the triangulated category \(\mathcal P\mathit{erf}-\mathcal R\) is called the category of perfect complexes on \(\mathscr X.\) There is an equivalence of categories \(\mathcal H^0(\mathscr P\mathit{erf}-\mathcal R)\cong \mathit{Perf}-\mathcal R,\) and by considering the DG categories of the form \(\mathscr P\mathit{erf}-\mathcal R\) the author is able to glue together noncommutative schemes from affine pieces and to obtain noncommutative derived schemes.
The paper studies noncommutative derived schemes, and properties as smoothness, regularity, and properness are extended to such. Morphisms between NC schemes are defined as quasi-functors between DG categories, so there are more morphisms between schemes in the noncommutative sense, forming a DG category where the morphisms can be added and one can define maps between morphisms. Also, for noncommutative schemes the concepts of compactification, resolution of singularities and the Serre functor, are defined.
As a preparation, this article studies some properties of derived noncommutative schemes and compare them to the corresponding properties for commutative schemes. Much space is devoted to a glueing together of noncommutative schemes. This concept does not exist in the commutative world, and gives a lot of applications. The most important is a geometric realization of derived noncommutative schemes, arising naturally. First of all as a natural geometric realization of an abstract algebraic structure, and also because many noncommutative schemes are constructed from a usual geometry with a given geometric realization. These are sometimes linked to admissible subcategories \(\mathcal N\subset\mathscr P\mathit{erf}-\mathcal X\) of categories of perfect complexes on smooth projective schemes \(X.\) Then \(\mathcal N\) is a DG category \(\mathcal N\subset\mathscr P\mathit{erf}-\mathcal R\) and \(\mathcal N\) is smooth and proper. The embedding \(\mathcal N\subset\mathscr P\mathit{erf}-\mathcal X\) is a particular case of a geometric realization of smooth, proper, noncommutative schemes, and is called pure.
Given two DG categories \(\mathscr A,\mathscr B\) and a \(\mathscr B^\circ-\mathscr A\)-bimodule \(\mathsf T\) a DG category \(\mathscr A\vdash_{\mathsf T}\mathscr B\) is defined, and called the gluing via \(\mathsf T.\) This defines gluing of noncommutative schemes \(\mathscr X, \mathscr Y\) under conditions on \(\mathsf T\) and base extension conditions are considered.
In previous work [D. Orlov, Adv. Math. 302, 59–105 (2016; Zbl 1368.14031)], the author proved that if \(\mathscr X, \mathscr Y\) comes from admissible subcategories in categories of perfect complexes on smooth projective schemes, then their gluing \(\mathscr X\vdash_{\mathsf T}\mathscr Y\) via a perfect bimodule \(\mathsf T\) can be realized in the same way, and the article gives conditions for when geometric realizations are stable under base change. Also, noncommutative schemes give more information than commutative schemes. Phenomena called phantoms and quasi-phantoms are discussed. They are smooth and proper noncommutative schemes \(\mathscr X\) for which the \(K\)-theory \(K_\ast(\mathscr X)\) is completely trivial. Krull-Schmidt partners are discussed; these are smooth and proper noncommutative schemes \(\mathscr X\) and \(\mathscr X'\) for which there exists a smooth proper noncommutative scheme \(\mathscr Y\) with the condition that some gluings \(\mathscr X\vdash_{\mathsf T}\mathscr Y\) and \(\mathscr X'\vdash_{\mathsf T}\mathscr Y\) are isomorphic. The paper gives a procedure for constructing smooth and proper noncommutative schemes that are Krull-Schmidt partners for the usual schemes and have the same additive invariants.
The final section of the article studies geometric realization of finite-dimensional algebras. An explicit construction is given, and the particular case of algebras that are endomorphism of a vector-bundle on a (projective) scheme gives really nice results, linking the definitions in this article to other versions (tilting theory) of noncommutative geometry.
This article gives an important survey of Orlov’s noncommutative geometry, it gives a very thorough illustration of the ideas and the complete theory, and it includes new techniques and thereby new important results.

MSC:

14A30 Fundamental constructions in algebraic geometry involving higher and derived categories (homotopical algebraic geometry, derived algebraic geometry, etc.)
14A22 Noncommutative algebraic geometry
16E45 Differential graded algebras and applications (associative algebraic aspects)
18G80 Derived categories, triangulated categories
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
18G35 Chain complexes (category-theoretic aspects), dg categories

Citations:

Zbl 1368.14031

References:

[1] V. Alexeev and D. Orlov 2013 Derived categories of Burniat surfaces and exceptional collections Math. Ann.357 2 743-759 · Zbl 1282.14030 · doi:10.1007/s00208-013-0917-2
[2] M. Auslander 1971 Representation dimension of Artin algebras Queen Mary College Mathematical Notes Queen Mary College, London 179 pp. · Zbl 0331.16026
[3] republished in M. Auslander 1999 Selected works of Maurice Auslander, Part 1 Amer. Math. Soc., Providence, RI 505-574 · Zbl 1007.01021
[4] A. A. Beilinson, J. Bernstein, and P. Deligne 1982 Faisceaux pervers Analysis and topology on singular spacesLuminy 1981 Astérisque 100, I Soc. Math. France, Paris 5-171 · Zbl 0536.14011
[5] P. Berthelot, A. Grothendieck, and L. Illusie (eds.) 1971 Théorie des intersections et théorème de Riemann-Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6) Lecture Notes in Math. 225 Springer-Verlag, Berlin-New York xii+700 pp. · Zbl 0218.14001 · doi:10.1007/BFb0066283
[6] Ch. Böhning, H.-Ch. Graf von Bothmer, L. Katzarkov, and P. Sosna 2015 Determinantal Barlow surfaces and phantom categories J. Eur. Math. Soc. (JEMS)17 7 1569-1592 · Zbl 1323.14014 · doi:10.4171/JEMS/539
[7] Ch. Böhning, H.-Ch. Graf von Bothmer, and P. Sosna 2013 On the derived category of the classical Godeaux surface Adv. Math.243 203-231 · Zbl 1299.14015 · doi:10.1016/j.aim.2013.04.017
[8] А. И. Бондал 1989 Представления ассоциативных алгебр и когерентные пучки Изв. АН СССР. Сер. матем.53 1 25-44
[9] English transl. A. I. Bondal 1990 Representation of associative algebras and coherent sheaves Math. USSR-Izv.34 1 23-42 · Zbl 0692.18002 · doi:10.1070/IM1990v034n01ABEH000583
[10] А. И. Бондал, М. М. Капранов 1989 Представимые функторы, функторы Серра �� перестройки Изв. АН СССР. Сер. матем.53 6 1183-1205
[11] English transl. A. I. Bondal and M. M. Kapranov 1990 Representable functors, Serre functors, and mutations Math. USSR-Izv.35 3 519-541 · Zbl 0703.14011 · doi:10.1070/IM1990v035n03ABEH000716
[12] А. И. Бондал, М. М. Капранов 1990 Оснащенные триангулированные категории Матем. сб.181 5 669-683 · Zbl 0719.18005
[13] English transl. A. I. Bondal and M. M. Kapranov 1991 Enhanced triangulated categories Math. USSR-Sb.70 1 93-107 · Zbl 0729.18008 · doi:10.1070/SM1991v070n01ABEH001253
[14] A. Bondal and D. Orlov Semiorthogonal decomposition for algebraic varieties, Preprint MPIM 95/15 56 pp. https://www.mpim-bonn.mpg.de/node/263
[15] A. Bondal and D. Orlov 1995 alg-geom/9506012 55 pp.
[16] A. Bondal and D. Orlov 2001 Reconstruction of a variety from the derived category and groups of autoequivalences Compositio Math.125 3 327-344 · Zbl 0994.18007 · doi:10.1023/A:1002470302976
[17] A. Bondal and M. Van den Bergh 2003 Generators and representability of functors in commutative and noncommutative geometry Mosc. Math. J.3 1 1-36 · Zbl 1135.18302
[18] E. Cline, B. Parshall, and L. Scott 1988 Finite dimensional algebras and highest weight categories J. Reine Angew. Math.391 85-99 · Zbl 0657.18005
[19] V. Dlab and C. M. Ringel 1989 Quasi-hereditary algebras Illinois J. Math.33 2 280-291 · Zbl 0666.16014
[20] V. Dlab and C. M. Ringel 1989 Every semiprimary ring is the endomorphism ring of a projective module over a quasi-hereditary ring Proc. Amer. Math. Soc.107 1 1-5 · Zbl 0681.16015 · doi:10.2307/2048026
[21] V. Drinfeld 2004 DG quotients of DG categories J. Algebra272 2 643-691 · Zbl 1064.18009 · doi:10.1016/j.jalgebra.2003.05.001
[22] D. Dugger and B. Shipley \(2004 K\)-theory and derived equivalences Duke Math. J.124 3 587-617 · Zbl 1056.19002 · doi:10.1215/S0012-7094-04-12435-2
[23] A. I. Efimov 2017 (v1 - 2013) Homotopy finiteness of some DG categories from algebraic geometry 1308.0135 65 pp.
[24] S. Gorchinskiy and D. Orlov 2013 Geometric phantom categories Publ. Math. Inst. Hautes Études Sci.117 329-349 · Zbl 1285.14018 · doi:10.1007/s10240-013-0050-5
[25] V. Hinich 1997 Homological algebra of homotopy algebras Comm. Algebra25 10 3291-3323 · Zbl 0894.18008 · doi:10.1080/00927879708826055
[26] B. Keller 1994 Deriving DG categories Ann. Sci. École Norm. Sup. (4)27 1 63-102 · Zbl 0799.18007 · doi:10.24033/asens.1689
[27] B. Keller 2006 On differential graded categories International Congress of Mathematicians II Eur. Math. Soc., Zürich 151-190 · Zbl 1140.18008
[28] M. Kontsevich and Y. Soibelman 2009 Notes on \(A_{\infty}\)-algebras, \(A_{\infty}\)-categories and non-commutative geometry Homological mirror symmetry Lecture Notes in Phys. 757 Springer, Berlin 153-219 · Zbl 1202.81120 · doi:10.1007/978-3-540-68030-7_6
[29] A. Kuznetsov 2015 Height of exceptional collections and Hochschild cohomology of quasiphantom categories J. Reine Angew. Math.708 213-243 · Zbl 1331.14024
[30] A. Kuznetsov and V. A. Lunts 2015 Categorical resolutions of irrational singularities Int. Math. Res. Not. IMRN2015 13 4536-4625 · Zbl 1338.14020 · doi:10.1093/imrn/rnu072
[31] V. A. Lunts 2010 Categorical resolution of singularities J. Algebra323 10 2977-3003 · Zbl 1202.18006 · doi:10.1016/j.jalgebra.2009.12.023
[32] V. A. Lunts and D. O. Orlov 2010 Uniqueness of enhancement for triangulated categories J. Amer. Math. Soc.23 3 853-908 · Zbl 1197.14014 · doi:10.1090/S0894-0347-10-00664-8
[33] V. A. Lunts and O. M. Schnürer 2014 Smoothness of equivariant derived categories Proc. Lond. Math. Soc. (3)108 5 1226-1276 · Zbl 1300.14046 · doi:10.1112/plms/pdt053
[34] V. A. Lunts and O. M. Schnürer 2016 New enhancements of derived categories of coherent sheaves and applications J. Algebra446 203-274 · Zbl 1386.14076 · doi:10.1016/j.jalgebra.2015.09.017
[35] S. Mukai 1981 Duality between \(D(X)\) and \(D(\widehat X)\) with its application to Picard sheaves Nagoya Math. J.81 153-175 · Zbl 0417.14036 · doi:10.1017/S002776300001922X
[36] A. Neeman 1996 The Grothendieck duality theorem via Bousfield’s techniques and Brown representability J. Amer. Math. Soc.9 1 205-236 · Zbl 0864.14008 · doi:10.1090/S0894-0347-96-00174-9
[37] A. Neeman 2001 Triangulated categories Ann. of Math. Studies 148 Princeton Univ. Press, Princeton, NJ viii+449 pp. · Zbl 0974.18008 · doi:10.1515/9781400837212
[38] A. Neeman 2018 (v1 - 2017) Strong generators in \(D^{perf}(X)\) and \(D^b_{coh}(X)\) 1703.04484 36 pp.
[39] A. Neeman 2018 Triangulated categories with a single compact generator and a Brown representability theorem 1804.02240 59 pp.
[40] Д. О. Орлов 1992 Проективные расслоения, моноидальные преобразования и производные категории когерентных пучков Изв. РАН. Сер. матем.56 4 852-862
[41] English transl. D. O. Orlov 1993 Projective bundles, monoidal transformations, and derived categories of coherent sheaves Russian Acad. Sci. Izv. Math.41 1 133-141 · Zbl 0798.14007 · doi:10.1070/IM1993v041n01ABEH002182
[42] D. Orlov 1997 Equivalences of derived categories and K3 surfaces J. Math. Sci. (N. Y.)84 5 1361-1381 · Zbl 0938.14019 · doi:10.1007/BF02399195
[43] Д. О. Орлов 2002 Производные категории когерентных пучков на абелевых многообразиях и эквивалентности между ними Изв. РАН. Сер. матем.66 3 131-158 · doi:10.4213/im389
[44] English transl. D. O. Orlov 2002 Derived categories of coherent sheaves on Abelian varieties and equivalences between them Izv. Math.66 3 569-594 · Zbl 1031.18007 · doi:10.1070/IM2002v066n03ABEH000389
[45] Д. О. Орлов 2003 Производные категории когерентных пучков и эквивалентности между ними УМН58 3(351) 89-172 · doi:10.4213/rm629
[46] English transl. D. O. Orlov 2003 Derived categories of coherent sheaves and equivalences between them Russian Math. Surveys58 3 511-591 · Zbl 1050.01509 · doi:10.1070/RM2003v058n03ABEH000629
[47] D. Orlov 2009 Remarks on generators and dimensions of triangulated categories Mosc. Math. J.9 1 153-159
[48] D. Orlov 2016 Smooth and proper noncommutative schemes and gluing of DG categories Adv. Math.302 59-105 · Zbl 1368.14031 · doi:10.1016/j.aim.2016.07.014
[49] Д. О. Орлов 2015 Геометрические реализации колчанных алгебр Современные проблемы математики, механики и математической физики, Сборник статей Тр. МИАН 290 МАИК “Наука/Интерпериодика”, М. 80-94 · doi:10.1134/S0371968515030073
[50] English transl. D. O. Orlov 2015 Geometric realizations of quiver algebras Proc. Steklov Inst. Math.290 1 70-83 · Zbl 1348.14050 · doi:10.1134/S0081543815060073
[51] Д. О. Орлов 2016 Склейка категорий и партнеры Крулля-Шмидта УМН71 3(429) 203-204 · doi:10.4213/rm9720
[52] English transl. D. O. Orlov 2016 Gluing of categories and Krull-Schmidt partners Russian Math. Surveys71 3 594-596 · Zbl 1358.18004 · doi:10.1070/RM9720
[53] R. Rouquier 2008 Dimensions of triangulated categories J. K-Theory1 2 193-256 · Zbl 1165.18008 · doi:10.1017/is007011012jkt010
[54] M. Schlichting 2006 Negative \(K\)-theory of derived categories Math. Z.253 1 97-134 · Zbl 1090.19002 · doi:10.1007/s00209-005-0889-3
[55] D. Shklyarov 2007 On Serre duality for compact homologically smooth DG algebras math/0702590 13 pp.
[56] R. G. Swan 1996 Hochschild cohomology of quasiprojective schemes J. Pure Appl. Algebra110 1 57-80 · Zbl 0865.18010 · doi:10.1016/0022-4049(95)00091-7
[57] G. Tabuada 2005 Invariants additifs de dg-catégories Int. Math. Res. Not.2005 53 3309-3339 · Zbl 1094.18006 · doi:10.1155/IMRN.2005.3309
[58] G. Tabuada 2007 Théorie homotopique des DG-catégories Ph. D. thesis Univ. Paris Diderot - Paris 7, Paris 0710.4303 178 pp.
[59] R. W. Thomason and T. Trobaugh 1990 Higher algebraic K-theory of schemes and of derived categories The Grothendieck Festschrift Progr. Math. 88, III Birkhäuser Boston, Boston, MA 247-435 · doi:10.1007/978-0-8176-4576-2_10
[60] B. Toën 2007 The homotopy theory of \(dg\)-categories and derived Morita theory Invent. Math.167 3 615-667 · Zbl 1118.18010 · doi:10.1007/s00222-006-0025-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.