×

Design of delay-based output-feedback controllers optimizing a quadratic cost function via the delay Lyapunov matrix. (English) Zbl 1429.93115

Summary: A novel approach for the design of delayed output-feedback controllers that optimize a quadratic cost function is presented. The proposal is based on the formulation of the optimization of the quadratic performance criterion as a minimization problem whose objective function is given in terms of the so-called delay Lyapunov matrix. The computation of the delay Lyapunov matrix sensitivity with respect to the controller gains allows obtaining the gradient of the objective function and solving the minimization problem within a gradient-based optimization framework. The potential of the approach is shown by some examples of practical relevance.

MSC:

93B52 Feedback control
93C43 Delay control/observation systems

Software:

GradSamp; TRACE-DDE

References:

[1] Alexandrova, I. V.; Zhabko, A. P., A new LKF approach to stability analysis of linear systems with uncertain delays, Automatica, 91, 173-178 (2018) · Zbl 1387.93126
[2] Bellman, R. E.; Cooke, K. L., Differential-difference equations (1963), Academic Press: Academic Press New York · Zbl 0105.06402
[3] Breda, D.; Maset, S.; Vermiglio, R., Trace-dde: a tool for robust analysis and characteristic equations for delay differential equations, (J. J., Loiseau; W., Michiels; S. I., Niculescu; R., Sipahi, Topics in time delay systems: analysis, algorithm and control (2009), Springer), 145-155
[4] Burke, J. V.; Henrion, D.; Lewis, A. S.; Overton, M. L., Stabilization via nonsmooth, nonconvex optimization, IEEE Transactions on Automatic Control, 51, 11, 1760-1769 (2006) · Zbl 1366.93490
[5] Burke, J. V.; Lewis, A. S.; Overton, M. L., A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, Journal on Optimization, 15, 3, 751-779 (2005) · Zbl 1078.65048
[6] Chen, W. H.; Guan, Z. H.; Lu, X., Delay-dependent output feedback guaranteed cost control for uncertain time-delay systems, Automatica, 40, 7, 1263-1268 (2004) · Zbl 1056.93040
[7] Egorov, A. V. (2016). A finite necessary and sufficient stability condition for linear retarded type systems. In Proceedings of the 55th IEEE conference on decision and control; Egorov, A. V. (2016). A finite necessary and sufficient stability condition for linear retarded type systems. In Proceedings of the 55th IEEE conference on decision and control
[8] Egorov, A. V.; Kharitonov, V. L., Approximation of delay lyapunov matrices, International Journal of Control, 91, 11, 2588-2596 (2018), DOI: 10.1080/00207179.2016.1269950 · Zbl 1403.93088
[9] Egorov, A. V.; Mondié, S., Necessary stability conditions for linear delay systems, Automatica, 50, 12, 3204-3208 (2014) · Zbl 1309.93126
[10] Esfahani, S. H.; Petersen, I. R., An LMI approach to output-feedback-guaranteed cost control for uncertain time-delay systems, International Journal of Robust and Nonlinear Control, 10, 157-174 (2000) · Zbl 0951.93032
[11] Fridman, E.; Shaikhet, L., Stabilization by using artificial delays: an LMI approach, Automatica, 81, 429-437 (2017) · Zbl 1417.93252
[12] Gohberg, I. C.; Lerer, L. E., Resultants of matrix polynomials, American Mathematical Society. Bulletin, 82, 4 (1976) · Zbl 0343.15011
[13] Gomez, M. A.; Egorov, A.; Mondié, S., Lyapunov matrix based necessary and sufficient stability condition by finite mathematical operations for retarded type systems, Automatica (2019), (accepted)
[14] Gomez, M. A.; Egorov, A. V.; Mondié, S.; Michiels, W., Optimization of the \(H_2\) norm for single delay systems, with application to control design and model approximation, IEEE Transactions on Automatic Control, 64, 2, 804-811 (2019) · Zbl 1482.93191
[15] Jarlebring, E.; Vanbiervliet, J.; Michiels, W., Characterizing and computing the \(H_2\) norm of time-delay systems by solving the delay lyapunov equation, IEEE Transactions on Automatic Control, 56, 4, 814-825 (2011) · Zbl 1368.93094
[16] Kharitonov, V. L., Time-Delay Systems: Lyapunov functionals and matrices (2013), Birkhäuser: Birkhäuser Basel · Zbl 1285.93071
[17] Kharitonov, V. L.; Niculescu, S.-I.; Moreno, J.; Michiels, W., Static output feedback stabilization: necessary conditions for multiple delay controllers, IEEE Transactions on Automatic Control, 50, 1, 82-86 (2005) · Zbl 1365.93448
[18] Krasovskii, N., On the analytic construction of an optimal control in a system with time lags, Journal of Applied Mathematics and Mechanics, 26, 1, 50-67 (1962) · Zbl 0107.31603
[19] Kwon, W. H.; Park, P., Stabilizing and optimizing control for time-delay systems (2018), Springer International Publishing
[20] Lewis, A. S.; Overton, M. L., Nonsmooth optimization via quasi-newton methods, Mathematical Programming, 141, 135-163 (2013) · Zbl 1280.90118
[21] Michiels, W., Spectrum based stability analysis and stabilization of systems described by delay differential algebraic equations, IET Control Theory & Applications, 5, 16, 1829-1842 (2011)
[22] Michiels, W.; Zhou, B., Computing delay lyapunov matrices and \(H_2\) norms for large-scale problems (2018), arXiv:1808.08604 [math.NA]
[23] Niculescu, S.-I.; Michiels, W., Stabilizing a chain of integrators using multiple delays, IEEE Transactions on Automatic Control, 49, 5, 802-807 (2004) · Zbl 1365.93412
[24] Park, P.; Moon, Y. S.; Kwon, W. H., A stabilizing output-feedback linear quadratic control for pure input-delayed systems, International Journal of Control, 72, 5, 385-391 (1999) · Zbl 0956.93053
[25] Plischke, E., Transient effects of linear dynamical systems (2005), Universität Bremen: Universität Bremen Bremen, Germany, (Ph.D. thesis) · Zbl 1325.37001
[26] Ramírez, A.; Mondié, S.; Garrido, R.; Sipahi, R., Design of proportional-integral-retarded (pir) controllers for second-order lti systems, IEEE Transactions on Automatic Control, 61, 6, 1688-1693 (2016) · Zbl 1359.93306
[27] Ramírez, A.; Sipahi, R., Multiple intentional delays can facilitate fast consensus and noise reduction in a multiagent system, IEEE Transactions on Cybernetics, 1-12 (2018)
[28] Rellich, F.; Berkowitz, J., Perturbation theory of eigenvalue problems (1969), Gordon and Breach · Zbl 0181.42002
[29] Ross, D. W.; Flügge-Lotz, I., An optimal control problem for systems with differential-difference equation dynamics, SIAM Journal on Control, 7, 4, 609-623 (1969) · Zbl 0186.48601
[30] Santos, O.; Mondié, S., Guaranteed cost control of linear systems with distributed delays: a complete type functionals approach, International Journal of Control, Automation and Systems, 8, 3, 497-505 (2010)
[31] Santos, O.; Mondié, S.; Kharitonov, V. L., Linear quadratic suboptimal control for time-delay systems, International Journal of Control, 82, 1, 147-154 (2009) · Zbl 1154.49307
[32] Selivanov, A.; Fridman, E., An improved time-delay implementation of derivative-dependent feedback, Automatica, 98, 269-276 (2018) · Zbl 1406.93265
[33] Vanbiervliet, J.; Berheyden, K.; Michiels, W.; Vandewalle, S., A nonsmooth optimisation approach for the stabilisation of time-delay systems, ESAIM. Control, Optimisation and Calculus of Variations, 14, 478-493 (2008) · Zbl 1146.65056
[34] Villafuerte, R.; Mondié, S.; Garrido, R., Tuning of proportional retarded controllers: theory and experiments, IEEE Transactions on Control Systems Technology, 21, 3, 983-990 (2013)
[35] Vyhlídal, T.; Zítek, P., Mapping based algorithm for large-scale computation of quasi-polynomial zeros, IEEE Transactions on Automatic Control, 54, 1, 171-177 (2009) · Zbl 1367.65076
[36] Wilcox, R. M., Exponential operators and parameter differentiation in quantum physics, Journal of Mathematical Physics, 8, 4, 962-982 (1967) · Zbl 0173.29604
[37] Wu, Z.; Michiels, W., Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method (2011), Department of Computer Science, KU Leuven
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.