×

Holomorphic structure and quantum critical points in supersymmetric Lifshitz field theories. (English) Zbl 1429.81083

Summary: We construct supersymmetric Lifshitz field theories with four real supercharges in a general number of space dimensions. The theories consist of complex bosons and fermions and exhibit a holomorphic structure and non-renormalization properties of the superpotential. We study the theories in a diverse number of space dimensions and for various choices of marginal interactions. We show that there are lines of quantum critical points with an exact Lifshitz scale invariance and a dynamical critical exponent that depends on the coupling constants.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
58C10 Holomorphic maps on manifolds

References:

[1] P. Coleman and A.J. Schofield, Quantum criticality, Nature433 (2005) 226 [cond-mat/0503002].
[2] S. Sachdev and B. Keimer, Quantum criticality, Phys. Today64N2 (2011) 29 [arXiv:1102.4628] [INSPIRE].
[3] Gegenwart, P.; Si, Q.; Steglich, F., Quantum criticality in heavy-fermion metals, Nature Phys., 4, 186 (2008) · doi:10.1038/nphys892
[4] S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge U.K. (2011). · Zbl 1233.82003 · doi:10.1017/CBO9780511973765
[5] Ardonne, Eddy; Fendley, Paul; Fradkin, Eduardo, Topological order and conformal quantum critical points, Annals of Physics, 310, 493-551 (2004) · Zbl 1052.81089 · doi:10.1016/j.aop.2004.01.004
[6] Grinstein, G., Anisotropic sine-gordon model and infinite-order phase transitions in three dimensions, Phys. Rev., B 23, 4615 (1981) · doi:10.1103/PhysRevB.23.4615
[7] M. Gurvitch and A.T. Fiory, Resistivity of La1.825Sr0.175CuO4and YBa2Cu3O7to 1100 K: absence of saturation and its implications, Phys. Rev. Lett.5 (1987) 1337.
[8] O. Trovarelli et al., bRh2 Si2 : pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition, Phys. Rev. Lett.85 (2000) 626.
[9] Bruin, JAN; Sakai, H.; Perry, RS; Mackenzie, AP, Similarity of scattering rates in metals showing T-linear resistivity, Science, 339, 804 (2013) · doi:10.1126/science.1227612
[10] Hornreich, RM; Luban, M.; Shtrikman, S., Critical behavior at the onset ofxk-space instability on the λ line, Phys. Rev. Lett., 35, 1678 (1975) · doi:10.1103/PhysRevLett.35.1678
[11] N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett.B 318 (1993) 469 [hep-ph/9309335] [INSPIRE].
[12] Grisaru, M. T.; Siegel, W.; Roček, M., Improved methods for supergraphs, Nuclear Physics B, 159, 429-450 (1979) · doi:10.1016/0550-3213(79)90344-4
[13] W. Xue, Non-relativistic supersymmetry, arXiv:1008.5102 [INSPIRE].
[14] Gomes, M.; Nascimento, JR; Petrov, AY; Silva, AJ, Hořava-Lifshitz-like extensions of supersymmetric theories, Phys. Rev., D 90, 125022 (2014)
[15] Meyer, A.; Oz, Y.; Raviv-Moshe, A., On non-relativistic supersymmetry and its spontaneous breaking, JHEP, 06, 128 (2017) · Zbl 1380.81408 · doi:10.1007/JHEP06(2017)128
[16] D. Redigolo, On Lorentz-violating supersymmetric quantum field theories, Phys. Rev.D 85 (2012) 085009 [arXiv:1106.2035] [INSPIRE].
[17] M. Gomes, J. Queiruga and A.J. da Silva, Lorentz breaking supersymmetry and Hǒrava-Lifshitz-like models, Phys. Rev.D 92 (2015) 025050 [arXiv:1506.01331] [INSPIRE].
[18] Gallegos, EA, \[N \mathcal{N} = 1\] D \[\mathcal{D} = 3\] Lifshitz-Wess-Zumino model: a paradigm of reconciliation between Lifshitz-like operators and supersymmetry, Phys. Lett., B 793, 372 (2019) · Zbl 1421.81079 · doi:10.1016/j.physletb.2019.05.001
[19] Auzzi, R.; Baiguera, S.; Nardelli, G.; Penati, S., Renormalization properties of a Galilean Wess-Zumino model, JHEP, 06, 048 (2019) · Zbl 1416.81179 · doi:10.1007/JHEP06(2019)048
[20] Orlando, D.; Reffert, S., On the perturbative expansion around a Lifshitz point, Phys. Lett., B 683, 62 (2010) · doi:10.1016/j.physletb.2009.11.053
[21] Dijkgraaf, R.; Orlando, D.; Reffert, S., Relating field theories via stochastic quantization, Nucl. Phys., B 824, 365 (2010) · Zbl 1196.81150 · doi:10.1016/j.nuclphysb.2009.07.018
[22] Chapman, S.; Oz, Y.; Raviv-Moshe, A., On supersymmetric Lifshitz field theories, JHEP, 10, 162 (2015) · Zbl 1388.81790 · doi:10.1007/JHEP10(2015)162
[23] Parisi, G.; Sourlas, N., Supersymmetric field theories and stochastic differential equations, Nucl. Phys., B 206, 321 (1982) · Zbl 0968.81547 · doi:10.1016/0550-3213(82)90538-7
[24] Witten, E., Constraints on supersymmetry breaking, Nucl. Phys., B 202, 253 (1982) · doi:10.1016/0550-3213(82)90071-2
[25] Witten, E., Dynamical breaking of supersymmetry, Nucl. Phys., B 188, 513 (1981) · Zbl 1258.81046 · doi:10.1016/0550-3213(81)90006-7
[26] Sourlas, N., Introduction to supersymmetry in condensed matter physics, Physica, D 15, 115 (1985)
[27] Witten, E., Supersymmetry and Morse theory, J. Diff. Geom., 17, 661 (1982) · Zbl 0499.53056 · doi:10.4310/jdg/1214437492
[28] Damgaard, PH; Huffel, H., Stochastic quantization, Phys. Rept., 152, 227 (1987) · doi:10.1016/0370-1573(87)90144-X
[29] Anselmi, D.; Halat, M., Renormalization of Lorentz violating theories, Phys. Rev., D 76, 125011 (2007) · Zbl 1113.83305
[30] Anselmi, D., Weighted scale invariant quantum field theories, JHEP, 02, 051 (2008) · doi:10.1088/1126-6708/2008/02/051
[31] Bergman, O., Nonrelativistic field theoretic scale anomaly, Phys. Rev., D 46, 5474 (1992)
[32] S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys.21 (2010) 1 [Adv. Ser. Direct. High Energy Phys.18 (1998) 1] [hep-ph/9709356] [INSPIRE]. · Zbl 1106.81320
[33] Dolgallo, AD; Ilinski, KN, Holomorphic supersymmetric quantum mechanics, generalized supersymmetry, and parasupersymmetry, Annals Phys., 236, 219 (1994) · Zbl 0805.58066 · doi:10.1006/aphy.1994.1111
[34] Jaffe, AM; Lesniewski, A.; Lewenstein, M., Ground state structure in supersymmetric quantum mechanics, Annals Phys., 178, 313 (1987) · Zbl 0625.58042 · doi:10.1016/0003-4916(87)90018-2
[35] Arav, I.; Oz, Y.; Raviv-Moshe, A., Lifshitz anomalies, Ward identities and split dimensional regularization, JHEP, 03, 088 (2017) · Zbl 1377.83108 · doi:10.1007/JHEP03(2017)088
[36] M. Visser, Lorentz symmetry breaking as a quantum field theory regulator, Phys. Rev.D 80 (2009) 025011 [arXiv:0902.0590] [INSPIRE].
[37] T. Fujimori, T. Inami, K. Izumi and T. Kitamura, Tree-level unitarity and renormalizability in Lifshitz scalar theory, PTEP2016 (2016) 013B08 [arXiv:1510.07237] [INSPIRE]. · Zbl 1361.83007
[38] A.L. Fitzpatrick et al., A new theory of anyons, arXiv:1205.6816 [INSPIRE].
[39] Alexandre, J., Lifshitz-type quantum field theories in particle physics, Int. J. Mod. Phys., A 26, 4523 (2011) · Zbl 1247.81248 · doi:10.1142/S0217751X11054656
[40] J. Alexandre and J. Brister, Fermion effective dispersion relation for z = 2 Lifshitz QED, Phys. Rev.D 88 (2013) 065020 [arXiv:1307.7613] [INSPIRE].
[41] Hahn, Y.; Zimmermann, W., An elementary proof of dyson’s power counting theorem, Commun. Math. Phys., 10, 330 (1968) · Zbl 0167.55805 · doi:10.1007/BF03399506
[42] Weinberg, S., High-energy behavior in quantum field theory, Phys. Rev., 118, 838 (1960) · Zbl 0098.20403 · doi:10.1103/PhysRev.118.838
[43] Leibbrandt, G.; Williams, J., Split dimensional regularization for the Coulomb gauge, Nucl. Phys., B 475, 469 (1996) · doi:10.1016/0550-3213(96)00299-4
[44] Leibbrandt, G., The three point function in split dimensional regularization in the Coulomb gauge, Nucl. Phys., B 521, 383 (1998) · doi:10.1016/S0550-3213(98)00211-9
[45] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992). · Zbl 0516.53060
[46] Dreiner, HK; Haber, HE; Martin, SP, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept., 494, 1 (2010) · doi:10.1016/j.physrep.2010.05.002
[47] R. Shankar, Renormalization group approach to interacting fermions, Rev. Mod. Phys.66 (1994) 129 [cond-mat/9307009] [INSPIRE].
[48] J. Polchinski, Effective field theory and the Fermi surface, in the proceedings of the Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles, June 1-26, Boulder, U.S.A. (1992), hep-th/9210046 [INSPIRE].
[49] A. Azzollini and A. Pomponio, Compactness results and applications to some “zero mass” elliptic problems, Nonlinear Anal.69 (2008) 3559 [math/0601410]. · Zbl 1159.35022
[50] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (1983) 313. · Zbl 0533.35029
[51] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal.82 (1983) 347. · Zbl 0556.35046
[52] O. Aharony and V. Narovlansky, Renormalization group flow in field theories with quenched disorder, Phys. Rev.D 98 (2018) 045012 [arXiv:1803.08534] [INSPIRE].
[53] Gruner, G., The dynamics of charge-density waves, Rev. Mod. Phys., 60, 1129 (1988) · doi:10.1103/RevModPhys.60.1129
[54] Gruner, G., The dynamics of spin-density waves, Rev. Mod. Phys., 66, 1 (1994) · doi:10.1103/RevModPhys.66.1
[55] Vojta, M., Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity, Adv. Phys., 58, 699 (2009) · doi:10.1080/00018730903122242
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.