×

An algebraic classification of exceptional EFTs. II: Supersymmetry. (English) Zbl 1429.81047

Summary: For part I see [Zbl 1421.81080]. We present a novel approach to classify supersymmetric effective field theories (EFTs) whose scattering amplitudes exhibit enhanced soft limits. These enhancements arise due to non-linearly realised symmetries on the Goldstone modes of such EFTs and we classify the algebras that these symmetries can form. Our main focus is on so-called exceptional algebras which lead to field-dependent transformation rules and EFTs with the maximum possible soft enhancement at a given derivative power counting. We adapt existing techniques for Poincaré invariant theories to the supersymmetric case, and introduce superspace inverse Higgs constraints as a method of reducing the number of Goldstone modes while maintaining all symmetries. Restricting to the case of a single Goldstone supermultiplet in four dimensions, we classify the exceptional algebras and EFTs for a chiral, Maxwell or real linear supermultiplet. Moreover, we show how our algebraic approach allows one to read off the soft weights of the different component fields from superspace inverse Higgs trees, which are the algebraic cousin of the on-shell soft data one provides to soft bootstrap EFTs using on-shell recursion. Our Lie-superalgebraic approach extends the results of on-shell methods and provides a complementary perspective on non-linear realisations.

MSC:

81T10 Model quantum field theories
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
81T60 Supersymmetric field theories in quantum mechanics

Citations:

Zbl 1421.81080

References:

[1] H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE]. · Zbl 1332.81010
[2] Cheung, C.; Kampf, K.; Novotny, J.; Trnka, J., Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett., 114, 221602 (2015) · doi:10.1103/PhysRevLett.114.221602
[3] Cheung, C.; Kampf, K.; Novotny, J.; Shen, C-H; Trnka, J., A Periodic Table of Effective Field Theories, JHEP, 02, 020 (2017) · Zbl 1377.81123 · doi:10.1007/JHEP02(2017)020
[4] Padilla, A.; Stefanyszyn, D.; Wilson, T., Probing Scalar Effective Field Theories with the Soft Limits of Scattering Amplitudes, JHEP, 04, 015 (2017) · Zbl 1378.81147 · doi:10.1007/JHEP04(2017)015
[5] Cheung, C.; Kampf, K.; Novotny, J.; Shen, C-H; Trnka, J., On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett., 116, 041601 (2016) · doi:10.1103/PhysRevLett.116.041601
[6] I. Low and Z. Yin, Soft Bootstrap and Effective Field Theories, arXiv:1904.12859 [INSPIRE]. · Zbl 1429.81049
[7] Cheung, C.; Kampf, K.; Novotny, J.; Shen, C-H; Trnka, J.; Wen, C., Vector Effective Field Theories from Soft Limits, Phys. Rev. Lett., 120, 261602 (2018) · doi:10.1103/PhysRevLett.120.261602
[8] Elvang, H.; Hadjiantonis, M.; Jones, CRT; Paranjape, S., Soft Bootstrap and Supersymmetry, JHEP, 01, 195 (2019) · Zbl 1409.81146 · doi:10.1007/JHEP01(2019)195
[9] Elvang, H.; Hadjiantonis, M.; Jones, CRT; Paranjape, S., On the Supersymmetrization of Galileon Theories in Four Dimensions, Phys. Lett., B 781, 656 (2018) · Zbl 1398.81240 · doi:10.1016/j.physletb.2018.04.032
[10] Britto, R.; Cachazo, F.; Feng, B., New recursion relations for tree amplitudes of gluons, Nucl. Phys., B 715, 499 (2005) · Zbl 1207.81088 · doi:10.1016/j.nuclphysb.2005.02.030
[11] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94, 181602 (2005) · doi:10.1103/PhysRevLett.94.181602
[12] Arkani-Hamed, N.; Cachazo, F.; Kaplan, J., What is the Simplest Quantum Field Theory?, JHEP, 09, 016 (2010) · Zbl 1291.81356 · doi:10.1007/JHEP09(2010)016
[13] Adler, SL, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev., 137, b1022 (1965) · doi:10.1103/PhysRev.137.B1022
[14] S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial-vector current. II, Phys. Rev.139 (1965) B1638 [INSPIRE].
[15] Creminelli, P.; Serone, M.; Trincherini, E., Non-linear Representations of the Conformal Group and Mapping of Galileons, JHEP, 10, 040 (2013) · Zbl 1342.83050 · doi:10.1007/JHEP10(2013)040
[16] R.H. Boels and W. Wormsbecher, Spontaneously broken conformal invariance in observables, arXiv:1507.08162 [INSPIRE].
[17] P. Di Vecchia, R. Marotta, M. Mojaza and J. Nohle, New soft theorems for the gravity dilaton and the Nambu-Goldstone dilaton at subsubleading order, Phys. Rev.D 93 (2016) 085015 [arXiv:1512.03316] [INSPIRE].
[18] Bianchi, M.; Guerrieri, AL; Huang, Y-t; Lee, C-J; Wen, C., Exploring soft constraints on effective actions, JHEP, 10, 036 (2016) · Zbl 1390.81248 · doi:10.1007/JHEP10(2016)036
[19] S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev.177 (1969) 2239 [INSPIRE].
[20] C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev.177 (1969) 2247 [INSPIRE].
[21] Volkov, DV, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra, 4, 3 (1973)
[22] Ivanov, EA; Ogievetsky, VI, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor. Mat. Fiz., 25, 164 (1975) · doi:10.1007/BF01028947
[23] Bogers, MP; Brauner, T., Lie-algebraic classification of effective theories with enhanced soft limits, JHEP, 05, 076 (2018) · Zbl 1391.81139 · doi:10.1007/JHEP05(2018)076
[24] Bogers, MP; Brauner, T., Geometry of Multiflavor Galileon-Like Theories, Phys. Rev. Lett., 121, 171602 (2018) · doi:10.1103/PhysRevLett.121.171602
[25] R. Klein, E. Malek, D. Roest and D. Stefanyszyn, No-go theorem for a gauge vector as a spacetime Goldstone mode, Phys. Rev.D 98 (2018) 065001 [arXiv:1806.06862] [INSPIRE].
[26] Roest, D.; Stefanyszyn, D.; Werkman, P., An Algebraic Classification of Exceptional EFTs, JHEP, 08, 081 (2019) · Zbl 1421.81080 · doi:10.1007/JHEP08(2019)081
[27] Bonifacio, J.; Hinterbichler, K.; Joyce, A.; Rosen, RA, Shift Symmetries in (Anti) de Sitter Space, JHEP, 02, 178 (2019) · Zbl 1411.83062 · doi:10.1007/JHEP02(2019)178
[28] Pajer, E.; Stefanyszyn, D., Symmetric Superfluids, JHEP, 06, 008 (2019) · Zbl 1445.81051 · doi:10.1007/JHEP06(2019)008
[29] Goldstone, J.; Salam, A.; Weinberg, S., Broken Symmetries, Phys. Rev., 127, 965 (1962) · Zbl 0106.20601 · doi:10.1103/PhysRev.127.965
[30] Low, I.; Manohar, AV, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett., 88, 101602 (2002) · doi:10.1103/PhysRevLett.88.101602
[31] Hinterbichler, K.; Joyce, A., Goldstones with Extended Shift Symmetries, Int. J. Mod. Phys., D 23, 1443001 (2014) · Zbl 1315.81093 · doi:10.1142/S0218271814430019
[32] A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev.D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
[33] Goon, G.; Hinterbichler, K.; Joyce, A.; Trodden, M., Galileons as Wess-Zumino Terms, JHEP, 06, 004 (2012) · doi:10.1007/JHEP06(2012)004
[34] Born, M.; Infeld, L., Foundations of the new field theory, Proc. Roy. Soc. Lond., A 144, 425 (1934) · Zbl 0008.42203 · doi:10.1098/rspa.1934.0059
[35] Dirac, PAM, An Extensible model of the electron, Proc. Roy. Soc. Lond., A 268, 57 (1962) · Zbl 0111.43702
[36] K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev.D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].
[37] Carrillo González, M.; Penco, R.; Trodden, M., Radiation of scalar modes and the classical double copy, JHEP, 11, 065 (2018) · Zbl 1404.81166 · doi:10.1007/JHEP11(2018)065
[38] J. Novotny, Geometry of special Galileons, Phys. Rev.D 95 (2017) 065019 [arXiv:1612.01738] [INSPIRE].
[39] Volkov, DV; Akulov, VP, Is the Neutrino a Goldstone Particle?, Phys. Lett., B 46, 109 (1973) · doi:10.1016/0370-2693(73)90490-5
[40] Kallosh, R.; Karlsson, A.; Murli, D., Origin of Soft Limits from Nonlinear Supersymmetry in Volkov-Akulov Theory, JHEP, 03, 081 (2017) · Zbl 1377.81206 · doi:10.1007/JHEP03(2017)081
[41] Bellazzini, B., Softness and amplitudes’ positivity for spinning particles, JHEP, 02, 034 (2017) · Zbl 1377.81219 · doi:10.1007/JHEP02(2017)034
[42] W.-M. Chen, Y.-t. Huang and C. Wen, New Fermionic Soft Theorems for Supergravity Amplitudes, Phys. Rev. Lett.115 (2015) 021603 [arXiv:1412.1809] [INSPIRE].
[43] Ivanov, EA; Kapustnikov, AA, General Relationship Between Linear and Nonlinear Realizations of Supersymmetry, J. Phys., A 11, 2375 (1978)
[44] Ivanov, EA; Kapustnikov, AA, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys., G 8, 167 (1982) · doi:10.1088/0305-4616/8/2/004
[45] Guerrieri, AL; Huang, Y-t; Li, Z.; Wen, C., On the exactness of soft theorems, JHEP, 12, 052 (2017) · Zbl 1383.81323 · doi:10.1007/JHEP12(2017)052
[46] S. Endlich, A. Nicolis and R. Penco, Ultraviolet completion without symmetry restoration, Phys. Rev.D 89 (2014) 065006 [arXiv:1311.6491] [INSPIRE].
[47] Grisaru, MT; Pendleton, HN; Nieuwenhuizen, P., Supergravity and the S Matrix, Phys. Rev., D 15, 996 (1977)
[48] Grisaru, MT; Pendleton, HN, Some Properties of Scattering Amplitudes in Supersymmetric Theories, Nucl. Phys., B 124, 81 (1977) · doi:10.1016/0550-3213(77)90277-2
[49] Elvang, H.; Freedman, DZ; Kiermaier, M., Solution to the Ward Identities for Superamplitudes, JHEP, 10, 103 (2010) · Zbl 1291.81243 · doi:10.1007/JHEP10(2010)103
[50] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Series in Physics, Princeton University Press, Princeton U.S.A. (1992). · Zbl 0516.53060
[51] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, Heidelberg Germany (1986). · Zbl 0588.22001 · doi:10.1007/978-1-4684-0274-2
[52] Klein, R.; Roest, D.; Stefanyszyn, D., Spontaneously Broken Spacetime Symmetries and the Role of Inessential Goldstones, JHEP, 10, 051 (2017) · Zbl 1383.81111 · doi:10.1007/JHEP10(2017)051
[53] McArthur, IN, Nonlinear realizations of symmetries and unphysical Goldstone bosons, JHEP, 11, 140 (2010) · Zbl 1294.81221 · doi:10.1007/JHEP11(2010)140
[54] Goon, G.; Hinterbichler, K.; Joyce, A.; Trodden, M., Galileons as Wess-Zumino Terms, JHEP, 06, 004 (2012) · doi:10.1007/JHEP06(2012)004
[55] L.V. Delacrétaz, S. Endlich, A. Monin, R. Penco and F. Riva, (Re-)Inventing the Relativistic Wheel: Gravity, Cosets and Spinning Objects, JHEP11 (2014) 008 [arXiv:1405.7384] [INSPIRE]. · Zbl 1333.81288
[56] Bagger, J.; Galperin, A., Matter couplings in partially broken extended supersymmetry, Phys. Lett., B 336, 25 (1994) · doi:10.1016/0370-2693(94)00977-5
[57] Bagger, J.; Galperin, A., A New Goldstone multiplet for partially broken supersymmetry, Phys. Rev., D 55, 1091 (1997)
[58] Bellucci, S.; Ivanov, E.; Krivonos, S., Goldstone superfield actions in AdS5backgrounds, Nucl. Phys., B 672, 123 (2003) · Zbl 1058.81694 · doi:10.1016/j.nuclphysb.2003.08.040
[59] Khoury, J.; Lehners, J-L; Ovrut, B., Supersymmetric P(X,𝜙) and the Ghost Condensate, Phys. Rev., D 83, 125031 (2011)
[60] Roest, D.; Werkman, P.; Yamada, Y., Internal Supersymmetry and Small-field Goldstini, JHEP, 05, 190 (2018) · Zbl 1391.81194 · doi:10.1007/JHEP05(2018)190
[61] Hinterbichler, K.; Trodden, M.; Wesley, D., Multi-field galileons and higher co-dimension branes, Phys. Rev., D 82, 124018 (2010)
[62] Padilla, A.; Saffin, PM; Zhou, S-Y, Bi-galileon theory I: Motivation and formulation, JHEP, 12, 031 (2010) · Zbl 1294.81368 · doi:10.1007/JHEP12(2010)031
[63] Roček, M.; Tseytlin, AA, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev., D 59, 106001 (1999)
[64] Farakos, F.; Germani, C.; Kehagias, A., On ghost-free supersymmetric galileons, JHEP, 11, 045 (2013) · Zbl 1342.83471 · doi:10.1007/JHEP11(2013)045
[65] Deffayet, C.; Gümrükçüoğlu, AE; Mukohyama, S.; Wang, Y., A no-go theorem for generalized vector Galileons on flat spacetime, JHEP, 04, 082 (2014) · doi:10.1007/JHEP04(2014)082
[66] Bagger, J.; Galperin, A., The Tensor Goldstone multiplet for partially broken supersymmetry, Phys. Lett., B 412, 296 (1997) · doi:10.1016/S0370-2693(97)01030-7
[67] S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev.D 66 (2002) 086001 [Erratum ibid.D 67 (2003) 049901] [hep-th/0206126] [INSPIRE].
[68] Bellucci, S.; Ivanov, E.; Krivonos, S., Goldstone superfield actions for partially broken AdS5supersymmetry, Phys. Lett., B 558, 182 (2003) · Zbl 1011.81073 · doi:10.1016/S0370-2693(03)00273-9
[69] Deen, R.; Ovrut, B., Supergravitational Conformal Galileons, JHEP, 08, 014 (2017) · Zbl 1381.83131 · doi:10.1007/JHEP08(2017)014
[70] Achucarro, A.; Evans, JM; Townsend, PK; Wiltshire, DL, Super p-Branes, Phys. Lett., B 198, 441 (1987) · doi:10.1016/0370-2693(87)90896-3
[71] Azcarraga, JA; Townsend, PK, Superspace Geometry and Classification of Supersymmetric Extended Objects, Phys. Rev. Lett., 62, 2579 (1989) · doi:10.1103/PhysRevLett.62.2579
[72] Nicolis, A.; Penco, R.; Piazza, F.; Rattazzi, R., Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP, 06, 155 (2015) · Zbl 1388.83042 · doi:10.1007/JHEP06(2015)155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.