×

Existence of classical solutions and feedback stabilization for the flow in gas networks. (English) Zbl 1429.76090

Summary: We consider the flow of gas through pipelines controlled by a compressor station. Under a subsonic flow assumption we prove the existence of classical solutions for a given finite time interval. The existence result is used to construct Riemannian feedback laws and to prove a stabilization result for a coupled system of gas pipes with a compressor station. We introduce a Lyapunov function and prove exponential decay with respect to the \(L^{2}\)-norm.

MSC:

76N25 Flow control and optimization for compressible fluids and gas dynamics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76G25 General aerodynamics and subsonic flows

References:

[1] M.K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogenous Media1 (2006) 295-314. · Zbl 1109.76052 · doi:10.3934/nhm.2006.1.295
[2] M.K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks. Networks and Heterogenous Media1 (2006) 41-56. · Zbl 1108.76063 · doi:10.3934/nhm.2006.1.41
[3] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim.30 (2002) 1024-1065. · Zbl 0786.93009 · doi:10.1137/0330055
[4] G. Bastin, J.-M. Coron and B. d’Andrea-Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogenous Media4 (2009). Zbl1185.37175 · Zbl 1185.37175 · doi:10.3934/nhm.2009.4.177
[5] N.H. Chen, An explicit equation for friction factor in pipe. Ind. Eng. Chem. Fund.18 (1979) 296-297.
[6] R.M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals. SIAM J. Control Optim.48 (2009) 2032-2050. · Zbl 1196.35135 · doi:10.1137/080716372
[7] J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs136. AMS, Providence (2007).
[8] J.-M. Coron, B. d’Andréa-Novel and G. Bastin, A Lyapunov approach to control irrigation canals modeled by the Saint-Venant equations, in Proc. Eur. Control Conf., Karlsruhe, Germany (1999).
[9] J.-M. Coron, B. d’Andréa-Novel and G. Bastin, On boundary control design for quasi-linear hyperbolic systems with entropies as Lyapunov functions, in Proc. 41st IEEE Conf. Decision Control, Las Vegas, USA (2002).
[10] J.-M. Coron, B. d’Andréa-Novel, G. Bastin and L. Moens, Boundary control for exact cancellation of boundary disturbances in hyperbolic systems of conservation laws, in Proc. 44st IEEE Conf. Decision Control, Seville, Spain (2005). Zbl1105.93012 · Zbl 1105.93012 · doi:10.1137/S0363012903432651
[11] J.-M. Coron, B. d’Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Automat. Contr.52 (2007) 2-11.
[12] J.-M. Coron, G. Bastin and B. d’Andréa-Novel, Dissipative boundary conditions for one dimensional nonlinear hyperbolic systems. SIAM J. Control Optim.47 (2008) 1460-1498. Zbl1172.35008 · Zbl 1172.35008 · doi:10.1137/070706847
[13] J. de Halleux, C. Prieur, J.-M. Coron, B. d’Andréa-Novel and G. Bastin, Boundary feedback control in networks of open channels. Automatica39 (2003) 1365-1376. Zbl1175.93108 · Zbl 1175.93108 · doi:10.1016/S0005-1098(03)00109-2
[14] K. Ehrhardt and M. Steinbach, Nonlinear gas optimization in gas networks, in Modeling, Simulation and Optimization of Complex Processes, H.G. Bock, E. Kostina, H.X. Pu and R. Rannacher Eds., Springer Verlag, Berlin, Germany (2005). · Zbl 1069.90014
[15] M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equations between steady states. Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 1-11. Zbl1032.93030 · Zbl 1032.93030 · doi:10.1016/S0294-1449(02)00004-5
[16] M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction. Ann. Inst. H. Poincaré Anal. Non Linéaire26 (2009) 257-270. · Zbl 1154.76009 · doi:10.1016/j.anihpc.2008.01.002
[17] M. Gugat, G. Leugering and E.J.P.G. Schmidt, Global controllability between steady supercritical flows in channel networks. Math. Meth. Appl. Sci.27 (2004) 781-802. Zbl1047.93028 · Zbl 1047.93028 · doi:10.1002/mma.471
[18] M. Herty, Coupling conditions for networked systems of Euler equations. SIAM J. Sci. Comp.30 (2007) 1596-1612. · Zbl 1173.35080 · doi:10.1137/070688535
[19] M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media2 (2007) 733-750. Zbl1141.76057 · Zbl 1141.76057 · doi:10.3934/nhm.2007.2.733
[20] G. Leugering and E.J.P.G. Schmidt, On the modeling and stabilization of flows in networks of open canals. SIAM J. Control Optim.41 (2002) 164-180. Zbl1024.76009 · Zbl 1024.76009 · doi:10.1137/S0363012900375664
[21] T.-T. Li, Exact controllability for quasilinear hyperbolic systems and its application to unsteady flows in a network of open canals. Math. Meth. Appl. Sci.27 (2004) 1089-1114. Zbl1151.93316 · Zbl 1151.93316 · doi:10.1002/mma.488
[22] T.-T. Li, Exact boundary controllability of unsteady flows in a network of open canals. Math. Nachr.278 (2005) 310-329. Zbl1066.93005 · Zbl 1066.93005 · doi:10.1002/mana.200310240
[23] T.-T. Li and Y. Jin, Semi-global C2 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math. B22 (2001) 325-336. · Zbl 1005.35058 · doi:10.1142/S0252959901000334
[24] T.-T. Li and B. Rao, [Exact boundary controllability of unsteady flows in a tree-like network of open canals]. C. R. Acad. Sci. Paris Ser. I339 (2004) 867-872. Zbl1116.93311 · Zbl 1116.93311 · doi:10.1016/j.crma.2004.09.023
[25] T.-T. Li and Z. Wang, Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form. Int. J. Dynamical Systems Differential Equations1 (2007) 12-19. Zbl1168.35388 · Zbl 1168.35388 · doi:10.1504/IJDSDE.2007.013741
[26] T.-T. Li and W.-C. Yu, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathematics SeriesV. Durham, NC, USA (1985). Zbl0584.35068 · Zbl 0584.35068
[27] A. Martin, M. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization. Math. Programming105 (2006) 563-582. Zbl1085.90035 · Zbl 1085.90035 · doi:10.1007/s10107-005-0665-5
[28] E. Menon, Gas Pipeline Hydraulics. Taylor and Francis, Boca Raton (2005).
[29] A. Osiadacz, Simulation of transient flow in gas networks. Int. J. Numer. Meth. Fluids4 (1984) 13-23. · Zbl 0538.76066 · doi:10.1002/fld.1650040103
[30] A.J. Osciadacz, Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston (1987).
[31] A.J. Osciadacz, Different Transient Models - Limitations, advantages and disadvantages, in 28th Annual Meeting of PSIG (Pipeline Simulation Interest Group), San Francisco, California, USA (1996).
[32] Pipeline Simulation Interest Group, www.psig.org.
[33] M. Steinbach, On PDE Solution in Transient Optimization of Gas Networks. Technical Report ZR-04-46, ZIB Berlin, Germany (2004).
[34] Z. Vostrý, Transient Optimization of gas transport and distribution, in Proceedings of the 2nd International Workshop SIMONE on Innovative Approaches to Modelling and Optimal Control of Large Scale Pipelines, Prague, Czech Republic (1993) 53-62.
[35] Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math. B27 (2006) 643-656. Zbl1197.93062 · Zbl 1197.93062 · doi:10.1007/s11401-005-0520-2
[36] F.M. White, Fluid Mechanics. McGraw-Hill, New York, USA (2002).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.