×

High order symplectic integrators based on continuous-stage Runge-Kutta-Nyström methods. (English) Zbl 1429.65299

Summary: On the basis of the previous work by the first and the last authors [ibid. 323, 204–219 (2018; Zbl 1426.65203)], in this paper, we present a more effective way to construct high-order symplectic integrators for solving second order Hamiltonian equations. Instead of analyzing order conditions step by step as shown in the previous work, the new technique of this paper is using Legendre expansions to deal with the simplifying assumptions for order conditions. With the new technique, high-order symplectic integrators can be conveniently devised by truncating an orthogonal series.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations

Citations:

Zbl 1426.65203

Software:

LIMbook

References:

[1] Arnold, V. I., Mathematical Methods of Classical Mechanics (1989), Springer · Zbl 0692.70003
[2] Benettin, G.; Giorgilli, A., On the hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms, J. Statist. Phys., 74, 1117-1143 (1994) · Zbl 0842.58020
[3] Blanes, S.; Casas, F., A Concise Introduction to Numerical Geometric Integration, Monographs and Research Notes in Mathematics (2016), CRC Press · Zbl 1343.65146
[4] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian boundary value methods: energy preserving discrete line integral methods, J. Numer. Anal., Indust. Appl. Math., 5, 1-2, 17-37 (2010) · Zbl 1432.65182
[5] Brugnano, L.; Iavernaro, F.; Trigiante, D., A simple framework for the derivation and analysis of effective one-step methods for ODEs, Appl. Math. Comput., 218, 8475-8485 (2012) · Zbl 1245.65086
[6] Brugnano, L.; Iavernaro, F., Line integral methods for conservative problems, Monographs and Research Notes in Mathematics (2016), CRC Press: CRC Press Boca Raton, FL · Zbl 1335.65097
[7] Butcher, J. C., An algebraic theory of integration methods, Math. Comp., 26, 79-106 (1972) · Zbl 0258.65070
[8] Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods (1987), John Wiley & Sons · Zbl 0616.65072
[9] Celledoni, E.; McLachlan, R. I.; McLaren, D.; Owren, B.; Quispel, G. R.W.; Wright, W. M., Energy preserving runge-kutta methods, M2AN, 43, 645-649 (2009) · Zbl 1169.65348
[10] Channel, P. J.; Scovel, C., Symplectic integration of hamiltonian systems, Nonlinearity, 3 (1990) · Zbl 0704.65052
[11] Cohen, D.; Hairer, E., Linear energy-preserving integrators for poisson systems, BIT. Numer. Math., 51, 91-101 (2011) · Zbl 1216.65175
[12] Feng, K., On difference schemes and symplectic geometry, Proceedings of the 5-th International Symposium of Differential Geometry and Differential Equations, Beijing, 42-58 (1984) · Zbl 0659.65118
[13] Feng, K., K. Feng’s Collection of Works (1995), National Defence Industry Press: National Defence Industry Press Beijing
[14] Feng, K.; Qin, M., Symplectic geometric algorithms for hamiltonian systems (2010), Spriger and Zhejiang Science and Technology Publishing House: Spriger and Zhejiang Science and Technology Publishing House Heidelberg, Hangzhou, First edition · Zbl 1207.65149
[15] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving ordiary differential equations i: Nonstiff problems, Springer Series in Computational Mathematics, 8 (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0789.65048
[16] Hairer, E.; Wanner, G., Solving ordiary differential equations II: Stiff and differential-algebraic problems, Second Edition, Springer Series in Computational Mathematics, 14 (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0859.65067
[17] Hairer, E.; Lubich, C.; Wanner, G., Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, Second ed. (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1094.65125
[18] Hairer, E., Energy-preserving variant of collocation methods, JNAIAM J. Numer. Anal. Indust. Appl. Math., 5, 73-84 (2010) · Zbl 1432.65185
[19] Hairer, E.; Zbinden, C. J., On conjugate-symplecticity of b-series integrators, IMA J. Numer. Anal., 33, 57-79 (2013) · Zbl 1329.65307
[20] Lasagni, F., Canonical runge-kutta methods, ZAMP, 39, 952-953 (1988) · Zbl 0675.34010
[21] Leimkuhler, B.; Reich, S., Simulating Hamiltonian Dynamics (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1069.65139
[22] Miyatake, Y., An energy-preserving exponentially-fitted continuous stage Runge-Kutta methods for hamiltonian systems, BIT Numer. Math., 54, 777-799 (2014) · Zbl 1304.65263
[23] Miyatake, Y.; Butcher, J. C., A characterization of energy-preserving methods and the construction of parallel integrators for hamiltonian systems, SIAM J. Numer. Anal., 54, 3, 1993-2013 (2016) · Zbl 1342.65232
[24] Quispel, G. R.W.; McLaren, D. I., A new class of energy-preserving numerical integration methods, J. Phys. A: Math. Theor., 41, 045206 (2008) · Zbl 1132.65065
[25] Sanz-Serna, J. M., Runge-Kutta methods for hamiltonian systems, BIT, 28, 877-883 (1988) · Zbl 0655.70013
[26] Sanz-Serna, J. M.; Calvo, M. P., Numerical Hamiltonian problems (1994), Chapman & Hall · Zbl 0816.65042
[27] Shang, Z., KAM theorem of symplectic algorithms for hamiltonian systems, Numer. Math., 83, 477-496 (1999) · Zbl 0938.65149
[28] Sun, G., Construction of high order symplectic Runge-Kutta methods, J. Comput. Math., 11, 250-260 (1993) · Zbl 0787.65053
[29] Sun, G., Construction of high order symplectic PRK methods, J. Comput. Math., 13, 1, 40-50 (1995) · Zbl 0818.65070
[30] Suris, Y. B., On the conservation of the symplectic structure in the numerical solution of hamiltonian systems (in russian), (Filippov, S. S., Numerical Solution of Ordinary Differential Equations (1988), Keldysh Institute of Applied Mathematics, USSR Academy of Sciences: Keldysh Institute of Applied Mathematics, USSR Academy of Sciences Moscow), 148-160 · Zbl 0786.34021
[31] Suris, Y. B., Canonical transformations generated by methods of Runge-Kutta type for the numerical integration of the system \(x'' = - \frac{\partial u}{\partial x} \), Zh. Vychisl. Mat. iMat. FiZ., 29, 202-211 (1989) · Zbl 0686.65039
[32] Tang, W.; Sun, Y., Time finite element methods: a unified framework for numerical discretizations of ODEs, Appl. Math. Comput., 219, 2158-2179 (2012) · Zbl 1291.65203
[33] Tang, W.; Sun, Y., A new approach to construct Runge-Kutta type methods and geometric numerical integrators, AIP. Conf. Proc., 1479, 1291-1294 (2012)
[34] Tang, W.; Sun, Y., Construction of Runge-Kutta type methods for solving ordinary differential equations, Appl. Math. Comput., 234, 179-191 (2014) · Zbl 1298.65112
[35] Tang, W.; Lang, G.; Luo, X., Construction of symplectic (partitioned) Runge-Kutta methods with continuous stage, Appl. Math. Comput., 286, 279-287 (2016) · Zbl 1410.65264
[36] Tang, W.; Sun, Y.; Cai, W., Discontinuous Galerkin methods for hamiltonian ODEs and PDEs, J. Comput. Phys., 330, 340-364 (2017) · Zbl 1380.65288
[37] Tang, W.; Zhang, J., Symplecticity-preserving continuous-stage Runge-Kutta-nyström methods, Appl. Math. Comput., 323, 204-219 (2018) · Zbl 1426.65203
[38] Tang, Y., Formal energy of a symplectic scheme for hamiltonian systems and its applications (i), Comput. Math. Appl., 27, 31-39 (1994) · Zbl 0822.70012
[39] Tang, W., A note on continuous-stage Runge-Kutta methods, Appl. Math. Comput., 339, 231-241 (2018) · Zbl 1429.65154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.