×

Testing a null variance ratio in mixed models with zero degrees of freedom for error. (English) Zbl 1429.62287

Summary: An invariant test that combines the most powerful invariant tests against small and large alternatives is proposed for testing a null variance ratio in mixed models with zero degrees of freedom for error. Such models occur in many applications including plant and animal breeding and time varying regression coefficients. The proposed test statistic is easily computed and the corresponding test procedure is just as easy to carry out using currently available software. The power of the test is compared with the power of other tests advocated in the literature using two real data sets and is found to maintain high efficiency all over the parameter space.

MSC:

62J05 Linear regression; mixed models
62F03 Parametric hypothesis testing
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

Software:

AS 155
Full Text: DOI

References:

[1] Burch, B. D.; Iyer, H. K., Exact confidence intervals for a variance ratio (or heritability) in a mixed linear model, Biometrics, 53, 1318-1333 (1997) · Zbl 0911.62028
[2] Davies, R. B., Beta-optimal tests and an application to the summary evaluation of experiments, J. Roy. Statist. Soc. Ser. B, 31, 524-538 (1969) · Zbl 0186.52003
[3] Davies, R. B., The distribution of a linear combination of \(χ^2\) random variables, Appl. Statist., 29, 323-333 (1980) · Zbl 0473.62025
[4] Evans, J.L., Golden, B.L., Baily, D.R.C., Gilbert, R.P., Green, R.D., 1995. Genetic parameter estimates of ultrasound measures of backfat thickness, lioneye muscle area, and gray shading score in red angus cattle. Proceedings, Western Section, Lethbridge, Alberta, Canada, American Society of Animal Science, Vol. 46, pp. 202-204.; Evans, J.L., Golden, B.L., Baily, D.R.C., Gilbert, R.P., Green, R.D., 1995. Genetic parameter estimates of ultrasound measures of backfat thickness, lioneye muscle area, and gray shading score in red angus cattle. Proceedings, Western Section, Lethbridge, Alberta, Canada, American Society of Animal Science, Vol. 46, pp. 202-204.
[5] Falconer, D. S., Introduction to Quantitative Genetics (1989), Longman Scientific & Technical, Essex: Longman Scientific & Technical, Essex England
[6] Gilmour, A., Cullis, B., Welham, S., Gogel, B., Thompson R., 2004. An efficient computing strategy for prediction in mixed linear models. Comput. Statist. Data Anal. 44, 571-586.; Gilmour, A., Cullis, B., Welham, S., Gogel, B., Thompson R., 2004. An efficient computing strategy for prediction in mixed linear models. Comput. Statist. Data Anal. 44, 571-586. · Zbl 1429.62319
[7] Greene, W. H., Econometric Analysis (1993), Macmillan: Macmillan New York
[8] Hall, C. B.; Ying, J.; Kuo, L.; Lipton, R. B., Bayesian and profile likelihood change point methods for modeling cognitive function over time, Comput. Statist. Data Anal., 42, 91-109 (2003) · Zbl 1430.62055
[9] Henderson, C. R., A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values, Biometrics, 32, 69-83 (1976) · Zbl 0359.65023
[10] Imhof, J., Computing the distribution of quadratic forms in normal variables, Biometrika, 48, 419-426 (1961) · Zbl 0136.41103
[11] Jandhyala, V. K.; MacNeill, I. B., On testing for the constancy of regression coefficients under random walk and change-point alternatives, Econometric Theory, 8, 501-517 (1992)
[12] King, M. L., Robust tests for spherical symmetry and their applications to least squares regression, Ann. Statist., 8, 1265-1271 (1980) · Zbl 0441.62049
[13] King, M. L., Towards a theory of point optimal tests, Econometric Rev., 6, 169-218 (1988)
[14] King, M. L.; Hillier, G. H., Locally best invariant tests of the error covariance matrix of the linear regression model, J. Roy. Statist. Soc. Ser. B, 47, 98-102 (1985) · Zbl 0588.62087
[15] LaMotte, L. R.; McWhorter, A., An exact test for the presence of random walk coefficients in a linear regression model, J. Amer. Statist. Assoc., 73, 816-820 (1978) · Zbl 0396.62047
[16] LaMotte, L.R., McWhorter, A., 1982. Powers of tests for random walk regression coefficients. Unpublished manuscript, University of Houston, Houston, Texas.; LaMotte, L.R., McWhorter, A., 1982. Powers of tests for random walk regression coefficients. Unpublished manuscript, University of Houston, Houston, Texas.
[17] LaMotte, L. R.; McWhorter, A.; Prasad, R. A., Confidence intervals and tests on the variance ratio in random models with two variance components, Comm. Statist. Theory Methods, 17, 1135-1164 (1988)
[18] Lin, T. H.; Harville, D. A., Some alternatives to Wald’s confidence interval and test, J. Amer. Statist. Assoc., 86, 179-187 (1991)
[19] Nabeya, S.; Tanaka, K., Asymptotic theory of a test for the constancy of regression against the random walk alternative, Ann. Statist., 16, 218-235 (1988) · Zbl 0662.62098
[20] Nicholls, D.F., Pagan, A.R., 1985. Varying coefficient regression. In: Hannan, E.J. Krishnaiah, P.R., Rao, M.M. (Eds.), Handbook of Statistics, Vol. 5. North-Holland, Amsterdam, pp. 413-449.; Nicholls, D.F., Pagan, A.R., 1985. Varying coefficient regression. In: Hannan, E.J. Krishnaiah, P.R., Rao, M.M. (Eds.), Handbook of Statistics, Vol. 5. North-Holland, Amsterdam, pp. 413-449.
[21] Nyblom, J.; Makelainen, T., Comparison of tests for the presence of random walk coefficients in a simple linear model, J. Amer. Statist. Assoc., 78, 856-864 (1983) · Zbl 0531.62063
[22] Olsen, A.; Seely, J.; Birkes, D., Invariant quadratic unbiased estimation for two variance components, Ann. Statist., 4, 878-890 (1976) · Zbl 0344.62060
[23] Shively, T. S., An exact test for a stochastic coefficient in a time series regression model, J. Time Ser. Anal., 9, 81-88 (1988) · Zbl 0636.62095
[24] Stock, J. H.; Watson, M. W., Median unbiased estimation of coefficient variance in a time-varying parameter model, J. Amer. Statist. Assoc., 93, 349-358 (1998) · Zbl 0906.62093
[25] Westfall, P. H., Power comparisons for invariant variance ratio tests in mixed ANOVA models, Ann. Statist., 17, 318-326 (1989) · Zbl 0669.62055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.