×

A note on eigenvalues of a class of singular continuous and discrete linear Hamiltonian systems. (English) Zbl 1429.37029

The authors study the analytic and geometric multiplicities of an eigenvalue of the following class of singular linear Hamiltonian systems: \[ Jy'(t)=\left(P(t)+\lambda W(t)\right)y(t),\quad t\in(a,b), \] where both endpoints are on the limit circle. \(W(t), P(t)\) are Hermitian matrices for any \(t\in(a,b)\) and \(W\) is nonnegative. Here \(J\) is the canonical symplectic matrix. The authors show that the two multiplicities are equal.

MSC:

37J06 General theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
15A18 Eigenvalues, singular values, and eigenvectors
47A75 Eigenvalue problems for linear operators

References:

[1] Arens, R., Operational calculus of linear relations, Pacific J. Math., 11, 9-23 (1961) · Zbl 0102.10201
[2] Atlinson, F. V., Discrete and Continuous Boundary Problems (1964), Academic Press, Inc.: Academic Press, Inc. New York · Zbl 0117.05806
[3] Clark, S.; Zemánek, P., On discrete symplectic systems: associated maximal and minimal linear relations and nonhomogeneous problems, J. Math. Anal. Appl., 421, 779-805 (2015) · Zbl 1297.39008
[4] Dijksma, A.; de Snoo, H. S.V., Eigenfunction expansions associated with pairs of ordinary differential expressions, J. Differential Equations, 60, 21-56 (1985) · Zbl 0551.47008
[5] Eastham, M. S.P.; Kong, Q.; Wu, H.; Zettl, A., Inequalities among eigenvalues of Sturm-Liouville problems, J. Inequal. Appl., 3, 25-43 (1999) · Zbl 0927.34017
[6] Edmunds, D. E.; Evans, W. D., Spectral Theory and Differential Operators (1987), Oxford University Press · Zbl 0628.47017
[7] Everitt, W. N.; Nasri-Roudsari, G., Sturm-Liouville problems with coupled boundary conditions and Lagrange interpolation series: II, Rend. Mat. Appl. (7), 20, 199-236 (2000) · Zbl 0998.34023
[8] Hu, X.; Liu, L.; Wu, L.; Zhu, H., Singularity of the \(n\)-th eigenvalue of high dimensional Sturm-Liouville problems, J. Differential Equations, 266, 7, 4106-4136 (2019) · Zbl 1458.34053
[9] Hu, X.; Wang, P., Conditional Fredholm determinant for the S-periodic orbits in Hamiltonian systems, J. Funct. Anal., 261, 3247-3278 (2011) · Zbl 1273.37036
[10] Hu, X.; Wang, P., Hill-type formula and Krein-type trace formula for S-periodic solutions in ODEs, Discrete Contin. Dyn. Syst., 36, 763-784 (2016) · Zbl 1329.34134
[11] Hu, X.; Wang, P., Eigenvalue problem of Sturm-Liouville systems with separated boundary conditions, Math. Z., 283, 339-348 (2016) · Zbl 1352.34037
[12] Kato, T., Perturbation Theory for Linear Operators (1984), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York, Tokyo · Zbl 0531.47014
[13] Kong, L.; Kong, Q.; Wu, H.; Zettl, A., Regular approximations of singular Sturm-Liouville problems with limit-circle endpoints, Results Math., 45, 274-292 (2004) · Zbl 1088.34018
[14] Kong, Q.; Wu, H.; Zettl, A., Dependence of the \(n\)-th Sturm-Liouville eigenvalue on the problem, J. Differential Equations, 156, 328-354 (1999) · Zbl 0932.34081
[15] Kong, Q.; Wu, H.; Zettl, A., Geometric aspects of Sturm-Liouville problems, I. Structures on spaces of boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 130, 561-589 (2000) · Zbl 0957.34024
[16] Kong, Q.; Wu, H.; Zettl, A., Multiplicity of Sturm-Liouville eigenvalues, J. Comput. Appl. Math., 171, 291-309 (2004) · Zbl 1069.34124
[17] Naimark, M. A., Linear Differential Operators (1968), Ungar: Ungar New York · Zbl 0227.34020
[18] Ren, G.; Shi, Y., Defect indices and definiteness conditions for a class of discrete linear Hamiltonian systems, Appl. Math. Comput., 218, 3414-3429 (2011) · Zbl 1256.39004
[19] Ren, G.; Shi, Y., Self-adjoint extensions for discrete linear Hamiltonian systems, Linear Algebra Appl., 454, 1-48 (2014) · Zbl 1291.39018
[20] Shi, D.; Huang, Z., Relationships of multiplicities of eigenvalues of a higher-order ordinary differential operator, Acta Math. Sinica (Chin. Ser.), 53, 763-772 (2010) · Zbl 1225.47051
[21] Shi, Y., On the rank of the matrix radius of the limiting set for a singular linear Hamiltonian system, Linear Algebra Appl., 376, 109-123 (2004) · Zbl 1047.37041
[22] Shi, Y., Weyl-Titchmarsh theory for a class of discrete linear Hamiltonian systems, Linear Algebra Appl., 416, 452-519 (2006) · Zbl 1100.39020
[23] Shi, Y.; Shao, C.; Ren, G., Spectral properties of self-adjoint subspaces, Linear Algebra Appl., 483, 191-218 (2013) · Zbl 1268.47003
[24] Sun, H.; Shi, Y., Self-adjoint extensions for linear Hamiltonian systems with two singular endpoints, J. Funct. Anal., 259, 2003-2027 (2010) · Zbl 1202.47012
[25] Wang, Z.; Wu, H., Equalities of multiplicities of a Sturm-Liouville eigenvalue, J. Math. Anal. Appl., 306, 540-547 (2005) · Zbl 1083.34019
[26] Zemánek, P.; Clark, S., Characterization of self-adjoint extensions for discrete symplectic systems, J. Math. Anal. Appl., 440, 323-350 (2016) · Zbl 1381.39024
[27] Zhu, H.; Sun, S.; Shi, Y.; Wu, H., Dependence of eigenvalues of certain closely discrete Sturm-Liouville problems, Complex Anal. Oper. Theory, 10, 667-702 (2016) · Zbl 1339.39009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.