×

Characterizations of Hardy-type, Bergman-type and Dirichlet-type spaces on certain classes of complex-valued functions. (English) Zbl 1429.32009

It is well-known that if \(f\) is an analytic function on the open unit ball \(\mathbb{B}\) in \(\mathbb{C}^n\) , then \[ \sup_{0\le r<1}\|f_r\|_{L^p(\mathbb{S})}<\infty \quad\text{if and only if}\quad \int_{\mathbb{B}} \Delta\,(|f(z)|^p) (1-|z|^2)dV(z)<\infty, \] for any \(0 < p < \infty\). Here \(\mathbb{S}\) denotes the unit sphere and \(f_r(\zeta)=f(r\zeta)\), for \(0 < r < 1\) and \(\zeta\in \mathbb{S}\). Observe that this equivalence gives a characterization of the functions \(f\) in the Hardy space \(H^p(\mathbb{B})\).
In this paper the authors prove that if \(f\in C^2(\mathbb{B})\) satisfies \(\operatorname{Re}(f\overline{\Delta f})\ge 0\), then the above equivalence holds for any \(p\ge 2\). In particular, if \(p\ge 2\), the solutions \(f\) of the non-homogeneous Yukawa PDE \(\Delta f=\varphi f+\psi\operatorname{Re} f\), where \(\varphi\) and \( \psi\) are nonnegative continuous functions on \(\mathbb{B}\), satisfy the equivalence.
It is also well known that there exist analogous characterizations for analytic functions \(f\) in weighted Bergman spaces \(A^p_\alpha(\mathbb{B})\) (with respect to the weights \(\omega_\alpha(z)=(1-|z|^2)^\alpha\), \(\alpha>-1\)) or in Dirichlet-type spaces. Similarly to the Hardy case, the authors extend the corresponding equivalences to spaces of \(C^k\) functions on \(\mathbb{B}\). Such spaces are defined in terms of the above condition \(\operatorname{Re}(f\overline{\Delta f})\ge 0\) and/or of the Heinz’s nonlinear differential inequality \[ |\Delta f(z)| \le \varphi(z)\, \big(\|\partial f(z)\|^2+\|\overline{\partial} f(z)\|^2\big)^{1/2} + \psi(z)\, |f(z)|+\phi(z), \] where \(\varphi, \psi\) and \(\phi\) are nonnegative continuous functions on \(\mathbb{B}\), among others.

MSC:

32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
32A36 Bergman spaces of functions in several complex variables
32A37 Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA))

References:

[1] Arfken, G.: Mathematical methods for physicists. - Academic Press, Orlando, FL, 3rd ed., 1985. · Zbl 0135.42304
[2] Astala, K., T. Iwaniec, and G. Martin: Elliptic partial differential equations and quasiconformal mappings in the plane. - Princeton Math. Ser. 48, Princeton Univ. Press, Princeton, 2009. · Zbl 1182.30001
[3] Chen, S. L., S. Ponnusamy, and A. Rasila: On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces. - Math. Z. 279, 2015, 163-183. · Zbl 1314.30116
[4] Chen, S. L., S. Ponnusamy, and X. Wang: Integral means and coefficient estimates on planar harmonic mappings. - Ann. Acad. Sci. Fenn. Math. 37, 2012, 69-79. · Zbl 1291.30131
[5] Chen, S. L., S. Ponnusamy, and X. Wang: Weighted Lipschitz continuity, Schwarz-Pick’s Lemma and Landau-Bloch’s theorem for hyperbolic harmonic functions in the unit ball. Math. Model. Anal. 18, 2013, 66-79. · Zbl 1272.31014
[6] Chen, S. L., and A. Rasila: Schwarz-Pick type estimates of pluriharmonic mappings in the unit polydisk. - Illinois J. Math. 58, 2014, 1015-1024. · Zbl 1327.32007
[7] Chen, S. L., A. Rasila, and X. Wang: Radial growth, Lipschitz and Dirichlet spaces on solutions to the non-homogenous Yukawa equation. - Israel J. Math. 204, 2014, 261-282. · Zbl 1303.31005
[8] Coffman, A., and Y. Pan: Some nonlinear differential inequalities and an application to Hölder continuous almost complex structures. - Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 2011, 149-157. · Zbl 1213.35409
[9] Doob, J. L.: Classical potential theory and its probabilistic counterpart. - Springer, New York, 1984. · Zbl 0549.31001
[10] Duffin, R. J.: Yukawa potential theory. - J. Math. Anal. Appl. 35, 1971, 104-130. · Zbl 0214.36501
[11] Duffin, R. J.: Hilbert transforms in Yukawan potential theory. - Proc. Nat. Acad. Sci. U.S.A. 69, 1972, 3677-3679. · Zbl 0243.31003
[12] Duren, P.: Theory of Hpspaces. - Dover, Mineola, N.Y., 2nd ed., 2000.
[13] Duren, P., and A. P. Schuster: Bergman spaces. - Amer. Math. Soc., Providence, 2004. · Zbl 1059.30001
[14] Dyakonov, K. M.: Equivalent norms on Lipschitz-type spaces of holomorphic functions. Acta Math. 178, 1997, 143-167. · Zbl 0898.30040
[15] Dyakonov, K. M.: Holomorphic functions and quasiconformal mappings with smooth moduli. - Adv. Math. 187, 2004, 146-172. · Zbl 1056.30018
[16] Evans, L. C.: Partial differential equations. - Amer. Math. Soc., 1998. · Zbl 0902.35002
[17] Girela, D., M. Pavlović, and J. A. Peláez: Spaces of analytic functions of Hardy-Bloch type. - J. Anal. Math. 100, 2006, 53-81. · Zbl 1173.30320
[18] Girela, D., and J. A. Peláez: Integral means of analytic functions. - Ann. Acad. Sci. Fenn. Math. 29, 2004, 459-469. · Zbl 1069.30059
[19] Girela, D., and J. Peláez: Carleson measures, multipliers and integration operators for spaces of Dirichlet type. - J. Funct. Anal. 241, 2006, 334-358. · Zbl 1115.46020
[20] Girela, D., and J. Peláez: Carleson measures for spaces of Dirichlet type. - Integral Equations Operator Theoary 61, 2006, 511-547. · Zbl 1185.30056
[21] Hardy, G. H., and J. E. Littlewood: Some properties of conjugate functions. - J. Reine Angew. Math. 167, 1932, 405-423. · Zbl 0003.20203
[22] Hardy, G. H., and J. E. Littlewood: Some properties of fractional integrals II. - Math. Z. 34, 1932, 403-439. · Zbl 0003.15601
[23] Heinz, E.: On certain nonlinear elliptic differential equations and univalent mappings. - J. Anal. Math. 5, 1956/57, 197-272. · Zbl 0085.08701
[24] Ivashkovich, S., S. Pinchuk, and J. P. Rosay: Upper semi-continuity of the kobayashiroyden pseudo-norm, a counterexample for hölderian almost complex structures. - Ark. Math. 43, 2005, 395-401. · Zbl 1091.32009
[25] Pavlović, M.: On Dyakonov’s paper Equivalent norms on Lipschitz-type spaces of holomorphic functions. - Acta Math. 183, 1999, 141-143. · Zbl 0989.46011
[26] Pavlović, M.: Introduction to function spaces on the disk. - Mat. Inst. SANU, Beograd, 2004. · Zbl 1107.30001
[27] Pavlović, M.: Green’s formula and the Hardy-Stein identities. - Filomat 23, 2009, 135-153. · Zbl 1265.32013
[28] Pavlović, M.: Hardy-Stein type characterization of harmonic Bergman spaces. - Potential Anal. 32, 2010, 1-15. · Zbl 1183.31002
[29] Rudin, W.: Function theory in the unit ball of Cn. - Springer-Verlag, New York, Heidelberg, Berlin, 1980. · Zbl 0495.32001
[30] Schiff, J. L., and W. J. Walker: A sampling theorem for a class of pseudoanalytic functions. - Proc. Amer. Math. Soc. 111, 1991, 695-699. · Zbl 0726.30038
[31] Shi, J. H.: Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of Cn. - Trans. Amer. Math. Soc. 328, 1991, 619-637. · Zbl 0761.32001
[32] Stević, S.: Area type inequalities and integral means of harmonic functions on the unit ball. - J. Math. Soc. Japan 59, 2007, 583-601. · Zbl 1119.31004
[33] Wirths, K. J., and J. Xiao: An image-area inequality for some planar holomorphic maps. Results Math. 38, 2000, 172-179. · Zbl 0954.30017
[34] Yamashita, S.: Dirichlet-finite functions and harmonic majorants. - Illinois J. Math. 25, 1981, 626-631. · Zbl 0466.31002
[35] Zhu, K.: Spaces of holomorphic functions in the unit ball. - Springer, New York, 2005. · Zbl 1067.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.