×

On the concept of inner function in Hardy and Bergman spaces in multiply connected domains. (English) Zbl 1429.30046

Let \(\mathbb{D}\) be the open unit disk in the complex plane. The Hardy space \(H^p=H^p(\mathbb{D})\) for positive \(p\), consists of analytic functions on the open unit disk such that \[ \|f\|_{H^p}=\left (\sup_{0\le r<1}\frac{1}{2\pi}\int_0^{2\pi}|f(re^{i\theta})|^pd\theta<\infty\right )^{1/p}<\infty. \] Similarly, the Bergman space \(A^p=A^p(\mathbb{D})\) is the space of analytic functions for which \[ \|f\|_{A^p}=\left(\frac{1}{\pi}\int_{\mathbb{D}}|f(z)|^pdA(z)\right)^{1/p}<\infty, \] where \(dA(z)=dxdy\) is the area measure in the complex plane. Let \(\{z_k\}\) be a sequence in \(\mathbb{D}\) satisfying the condition \(\sum_k (1-|z_k|)<\infty\). If \(B\) is the Blaschke function associated to this zero sequence, and \(f\) is a function in the Hardy space whose zero set is precisely \(\{z_k\}\), then \(f/B\) belongs to \(H^p\) and \(\|f/B\|_{H^p}=\|f\|_{H^p}\). Blaschke functions are simple forms of a wider class of functions called inner functions. In the Hardy space, inner functions are solutions of the extremal problem \[ \sup\{\operatorname{Re}f(0):\|f\|_{H^p}\le 1, f(z_k)=0,\, k=1,2,\dots\}, \] where \(\{z_k\}\) is a zero sequence in \(H^p\), that is, there is at least one function \(f\in H^p\) that vanishes precisely on \(\{z_k\}\). Now, consider a zero sequence in the Bergman space \(A^p\). A theory of zero-divisors was developed by pioneering work of H. Hedenmalm [J. Reine Angew. Math. 422, 45–68 (1991; Zbl 0734.30040)] for \(p=2\), and subsequently by P. Duren et al. [Pac. J. Math. 157, No. 1, 37–56 (1993; Zbl 0739.30029)], for general \(p\). It turned out that if \(G\) is an inner function for the Bergman space, then \(\|f/G\|_{A^p}\le \|f\|_{A^p}\), which means that zero divisors are no longer isometric, but rather contractive.
The paper under review aims to explore the notion of inner function and zero divisor for Hardy and Bergman spaces defined on multiply connected domains, rather than simply connected domains. Given a space of analytic functions \(\mathcal{X}\) on a multiply connected domain \(\Omega\), and a zero set \(\mathcal{Z}\) for \(\mathcal{X}\), the authors aim to answer the following questions: Does there exist a function \(G\in \mathcal{X}\) that divides out zeros, that is to say, if \(f\in\mathcal{X}\) vanishes on \(\mathcal{Z}\), do we have the estimate \(\|f/G\|_{\mathcal{X}}\le \|f\|_{\mathcal{X}}\)? If this does not hold, can we hope in finding a constant \(C\) such that \(\|f/G\|_{\mathcal{X}}\le C \|f\|_{\mathcal{X}}\)? In this latter case, the authors call \(G\) a quasi-contractive divisor. It is shown in Theorem 2 that the Hardy space \(H^2(\Omega)\) supports quasi-contractive divisors, and so does the space \(H^p(\Omega)\) for other values of \(p\). The similar question for the Bergman space \(A^2(\Omega)\) remains unanswered. The paper focuses on an account on unsuccessful attempts to tackle this problem, and explains that there are good reasons to believe that the problem might be challenging. In the end, some open questions are raised.
Reviewer: Ali Abkar (Qazvin)

MSC:

30H10 Hardy spaces
30H20 Bergman spaces and Fock spaces
30J05 Inner functions of one complex variable

References:

[1] Abkar, A., Hedenmalm, H.: Invariant subspaces on multiply connected domains. Publ. Mat. 42, 521-557 (1997) · Zbl 0927.47002 · doi:10.5565/PUBLMAT_42298_15
[2] Agler, J., Harland, J., Raphael, B.J.: Classical function theory, operator dilation theory, and machine computation on multiply-connected domains. Mem. Am. Math. Soc. 191(892), viii+159 (2008) · Zbl 1145.30001
[3] Aleman, A., Richter, S.: Simply invariant subspaces of \[H^2\] H2 on some multiply connected domains. Integral Equ Oper Theory 24, 127-155 (1996) · Zbl 0896.47001 · doi:10.1007/BF01193457
[4] Bell, S.R.: The Cauchy Transform, Potential Theory and Conformal Mapping. CRC Press, Boca Raton, FL (2016) · Zbl 1359.30001
[5] Bénéteau, C., Khavinson, D.: The isoperimetric inequality via approximation theory and free boundary problems. Comput. Methods Funct. Theory 6, 253-274 (2006) · Zbl 1193.30001 · doi:10.1007/BF03321614
[6] Bénéteau, C., Khavinson, D., Liaw, C., Seco, D., Sola, A.A.: Orthogonal polynomials, reproducing kernels, and zeros of optimal approximants. J. Lond. Math. Soc. 94, 726-746 (2016) · Zbl 1356.42017 · doi:10.1112/jlms/jdw057
[7] Bénéteau, C., Fleeman, M.C., Khavinson, D.S., Seco, D., Sola, A.A.: Remarks on inner functions and optimal approximants. Can. Math. Bull. 61, 704-716 (2018) · Zbl 1419.46023 · doi:10.4153/CMB-2017-058-4
[8] Bergman, S.: The Kernel Function and Conformal Mapping, Second Rev edn. Amer. Math. Soc, Providence, RI (1970) · Zbl 0208.34302
[9] Björn, A.: Removable singularities for weighted Bergman spaces. Czechoslov. Math. J. 56, 179-227 (2006) · Zbl 1164.30303 · doi:10.1007/s10587-006-0012-x
[10] Carleson, L.: Selected Problems on Exceptional Sets. Van Nostrand Math. Studies 13. Van Nostrand, Princeton (1967) · Zbl 0189.10903
[11] Chen, Y., Hadwin, D., Liu, Z., Nordgren, E.: A Beurling theorem for generalized Hardy spaces on a multiply connected domain. Can. J. Math. 70, 515-537 (2018) · Zbl 1420.47023 · doi:10.4153/CJM-2017-007-8
[12] Cheng, R., Mashreghi, J., and Ross, W.T.: Inner functions in reproducing kernel spaces, preprint. Available at arXiv:1807.06341 · Zbl 1445.30029
[13] Coifman, R., Weiss, G.: A kernel associated with certain multiply connected domains and its applications to factorization theorems. Studia Math. 28, 31-68 (1966) · Zbl 0149.03202 · doi:10.4064/sm-28-1-31-68
[14] De Castro, L., Khavinson, D.: Analytic functions in Smirnov classes \[E^p\] Ep with real boundary values. Complex Anal. Oper. Theory 7, 101-106 (2013) · Zbl 1275.30028 · doi:10.1007/s11785-011-0174-x
[15] De Castro, L., Khavinson, D.: Analytic functions in Smirnov classes \[E^p\] Ep with real boundary values II. Anal. Math. Phys. 3, 21-35 (2013) · Zbl 1275.30029 · doi:10.1007/s13324-012-0036-3
[16] Dunduchenko, L.E., Kas’yanyuk, S.A.: Bounded analytic functions in multiply-connected domains. Dokl. Akad. Nauk. UkSSR 2, 111-115 (1959). (Ukrainian) · Zbl 0090.29101
[17] Dunduchenko, L.E., Kas’yanyuk, S.A.: On the subclasses of the Nevanlinna class of analytic functions in \[n\] n-connected circular domains. Dokl. Akad. Nauk. UkSSR 9, 945-948 (1959). (Ukrainian) · Zbl 0121.30405
[18] Duren, P.L.: Theory of \[H^p\] Hp Spaces. Dover Publ, Minneola, NY (2000) · Zbl 0215.20203
[19] Duren, P., Khavinson, D., Shapiro, H.S., Sundberg, C.: Contractive divisors in Bergman spaces. Pac. J. Math. 157, 37-56 (1993) · Zbl 0739.30029 · doi:10.2140/pjm.1993.157.37
[20] Duren, P., Khavinson, D., Shapiro, H.S., Sundberg, C.: Invariant subspaces in Bergman spaces and the biharmonic Green’s function. Mich. Math. J. 41, 247-259 (1994) · Zbl 0833.46044 · doi:10.1307/mmj/1029004992
[21] Duren, P., Schuster, A.: Theory of Bergman Spaces, Mathematical Surveys and Monographs 100. Amer. Math. Soc, Providence, RI (2004) · Zbl 1059.30001 · doi:10.1090/surv/100
[22] Fisher, S.D.: Function Theory on Planar Domains. A Second Course in Complex Analysis. Wiley, New York (1983) · Zbl 0511.30022
[23] Garnett, J.B., Marshall, D.E.: Harmonic Measure, New Math. Monographs 3. Cambridge University Press, Cambridge, UK (2005) · Zbl 1077.31001 · doi:10.1017/CBO9780511546617
[24] Goluzin, G.M.: Geometric Theory of Functions of a Complex Variable. Transl. Math. Monographs, 26. American Mathematical Society, Providence, RI (1969) · Zbl 0183.07502 · doi:10.1090/mmono/026
[25] Gustafsson, B., Sebbar, A.: Critical points of Green’s function and geometric function theory. Indiana Univ. Math. J. 61, 939-1017 (2012) · Zbl 1293.30025 · doi:10.1512/iumj.2012.61.4621
[26] Hasumi, M.: Invariant subspace theorems for finite Riemann surfaces. Can. J. Math. 18, 240-255 (1966) · Zbl 0172.41603 · doi:10.4153/CJM-1966-027-1
[27] Hasumi, M.: Hardy classes on plane domains. Ark. Mat. 16, 213-227 (1978) · Zbl 0407.30035 · doi:10.1007/BF02385996
[28] Hasumi, M.: Hardy classes on infinitely connected Riemann surfaces. Lecture Notes in Math, vol. 1027. Springer, Berlin (1983) · Zbl 0523.30028
[29] Hedenmalm, H.: A factorization theorem for square area-integrable analytic functions. J. Reine Angew. Math. 422, 45-68 (1991) · Zbl 0734.30040
[30] Hedenmalm, H.: The dual of a Bergman space on simply connected domains. J. Anal. Math. 88, 311-335 (2002) · Zbl 1043.46024 · doi:10.1007/BF02786580
[31] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Grad. Texts in Math. 199. Springer, New York (2000) · Zbl 0955.32003 · doi:10.1007/978-1-4612-0497-8
[32] Hedenmalm, H., Zhu, K.: On the failure of optimal factorization for certain weighted Bergman spaces. Complex Var. Theory Appl. 19, 165-176 (1992) · Zbl 0768.30006
[33] Heins, M.: Hardy classes on Riemann surfaces. Lecture Notes in Math, vol. 98. Springer, Berlin (1969) · Zbl 0176.03001
[34] Hejhal, D.: Classification theory for Hardy classes of analytic functions. Bull. Am. Math. Soc. 77, 767-771 (1971) · Zbl 0222.30025 · doi:10.1090/S0002-9904-1971-12801-X
[35] Hitt, D.: Invariant subspaces of \[{\cal{H}}^2\] H2 of an annulus. Pac. J. Math. 134, 101-120 (1988) · Zbl 0662.30035 · doi:10.2140/pjm.1988.134.101
[36] Hoffman, K.: Banach Spaces of Analytic Functions. Dover Publ, New York (1988) · Zbl 0734.46033
[37] Khavinson, D.: Remarks concerning boundary properties of analytic functions of \[E^p\] Ep-classes. Indiana Univ. Math. J. 31, 779-787 (1982) · Zbl 0471.30026 · doi:10.1512/iumj.1982.31.31054
[38] Khavinson, D.: Factorization theorems for different classes of analytic functions in multiply connected domains. Pac. J. Math. 108, 295-318 (1983) · Zbl 0494.30024 · doi:10.2140/pjm.1983.108.295
[39] Khavinson, D.: On removal of periods of conjugate functions in multiply connected domains. Mich. Math. J. 31, 371-379 (1984) · Zbl 0592.30045 · doi:10.1307/mmj/1029003081
[40] Khavinson, D., Solynin, A., Vassilev, D.: Overdetermined boundary value problems, quadrature domains and applications. Comput. Methods Funct. Theory 5, 19-48 (2005) · Zbl 1095.30031 · doi:10.1007/BF03321084
[41] Khavinson, S.Y.: Two Papers on Extremal Problems in Complex Analysis. Amer. Math. Soc. Translations, Ser. 2. American Mathematical Society, Providence (1986) · doi:10.1090/trans2/129
[42] Khavinson, S.Y.: Factorization of single-valued analytic functions on compact Riemann surfaces with a boundary, Russian Math. Surveys 44, 113-156 (1989) · Zbl 0711.30041
[43] Khavinson, S.Y.: A method for elimination of multivaluedness of analytic functions. Soviet Math. 34, 80-90 (1990) · Zbl 0722.30031
[44] Khavinson, D., Stessin, M.: Certain linear extremal problems in Bergman spaces of analytic functions. Indiana Univ. Math J. 46, 933-974 (1997) · Zbl 0912.30022 · doi:10.1512/iumj.1997.46.1375
[45] Khavinson, S.Y., Tumarkin, GTs: On the definition of analytic functions of class \[E_p\] Ep in multiply connected domains. Usp. Mat. Nauk 13, 201-206 (1958). (Russian) · Zbl 0087.07902
[46] Khavinson, S.Y., Tumarkin, G.T.: Analytic functions in multiply connected regions of the class of V.I. Smirnov (class \[SS)\]. Izv. Akad. Nauk. SSSR Ser. Mat. 22, 379-386 (1958). (Russian) · Zbl 0090.05004
[47] Khavinson, S.Y., Tumarkin, GTs: Existence of a single-valued function in a given class with a given modulus of its boundary values in multiply connected domains. Izv. Akad. Nauk. SSSR Ser. Mat. 22, 543-562 (1958). (Russian) · Zbl 0090.05005
[48] Khavinson, S.Y., Tumarkin, G.T.: Classes of analytic functions in multiply connected domains. In A.I. Markushevich (ed.) Studies of current problems of the theory of functions of a complex variable, Fizmatgiz, Moscow, 1960 (Russian); Gauthier-Villars, Paris, (1962). (French transl.)
[49] Kuzina, T.S.: Parametrization of certain classes of analytic functions in multiply-connected domains, VINITI 5/5 1980 (1770)
[50] Parreau, M.: Sur les moyennes des fonctions harmoniques et analytiques and la classification des surfaces de Riemann. Ann. Inst. Fourier (Grenoble) 3, 103-197 (1951). (French) · Zbl 0047.32004 · doi:10.5802/aif.37
[51] Royden, H.L.: Invariant subspaces of \[{\cal{H}}^p\] Hp for multiply connected regions. Pac. J. Math. 134, 151-172 (1988) · Zbl 0662.30034 · doi:10.2140/pjm.1988.134.151
[52] Rudin, W.: Analytic functions of class \[H^p\] Hp. Trans. Am. Math. Soc. 78, 46-66 (1955) · Zbl 0064.31203
[53] Sarason, D.: Doubly invariant subspaces of annulus operators. Bull. Am. Math. Soc. 69, 593-596 (1963) · Zbl 0123.09601 · doi:10.1090/S0002-9904-1963-11010-1
[54] Tamrazov, P.M.: A generalized Blaschke product in domains of arbitrary connectivity,. Dopovidi Akad. Nauk Ukrain. RSR 1962, 853-856 (1962) (Ukrainian) · Zbl 0125.04101
[55] Voichick, M.: Ideals and invariant subspaces of analytic functions. Trans. Am. Math. Soc. 111, 493-512 (1964) · Zbl 0147.11502 · doi:10.1090/S0002-9947-1964-0160920-5
[56] Voichick, M., Zalcman, L.: Inner and outer functions on Riemann surfaces. Proc. Amr. Math. Soc. 16, 1200-1204 (1965) · Zbl 0147.11503 · doi:10.1090/S0002-9939-1965-0183883-1
[57] Weir, R.: Zeros of extremal functions in weighted Bergman spaces. Pac. J. Math. 208, 187-199 (2003) · Zbl 1051.30012 · doi:10.2140/pjm.2003.208.187
[58] Widom, H.: The maximum principle for multi-valued analytic functions. Acta Math. 126, 63-82 (1971) · Zbl 0203.38302 · doi:10.1007/BF02392026
[59] Yakubovich, D.V.: Invariant subspaces of the operator of multiplication by \[z\] z in the space \[E^p\] Ep in a multiply connected domain. Zap. Nauchn. Sem. Leningr. Otdel. Mat. Inst. Steklov. (LOMI) 178, 166-183 (1989). (Russian) · Zbl 0722.47031
[60] Zmorovič, V.A.: The generalization of the Schwarz formula for multiply connected domains. Dokl. Akad. Nauk Ukrain. SSR 7, 853-856 (1962). (Ukrainian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.