×

Integral majorization type inequalities for the functions in the sense of strong convexity. (English) Zbl 1429.26029

The authors establish several integral majorization estimates which generalize J. Favard’s inequalities [Bull. Sci. Math., II. Ser. 57, 54–64 (1933; Zbl 0007.06104)] for strongly convex functions.
One of their main results is the following: Let \(c > 0\), \(\Psi: [0,\infty)\rightarrow \mathbb R\) be a continuous strongly convex function with modulus \(c\), and let \(f\), \(g\), and \(\Omega\) be three positive and integrable functions, defined on \([a, b]\), such that \(\int_a^xf(r)\Omega(r)\,dr\le\int_a^xg(r)\Omega(r)\,dr\), for all \(x\in[a,b]\) and \(\int_a^bf(r)\Omega(r)\,dr=\int_a^bg(r)\Omega(r)\,dr\). Then, if \(f\) is decreasing, \[ \int_a^b\Psi(g(r))\Omega(r)\,dr\ge\int_a^b\Psi(f(r))\Omega(r)\,dr+ c\int_a^b(f(r)-g(r))^2\Omega(r)\,dr. \] Similar results hold assuming \(g\) to be an increasing function.

MSC:

26D10 Inequalities involving derivatives and differential and integral operators
26D15 Inequalities for sums, series and integrals

Citations:

Zbl 0007.06104

References:

[1] de Finetti, B., Sulle stratificazioni convesse, Annali di Matematica Pura ed Applicata, 30, 4, 173-183 (1949) · Zbl 0039.05701 · doi:10.1007/bf02415006
[2] Merentes, N.; Nikodem, K., Remarks on strongly convex functions, Aequationes Mathematicae, 80, 1-2, 193-199 (2010) · Zbl 1214.26007 · doi:10.1007/s00010-010-0043-0
[3] Song, Y.-Q.; Adil Khan, M.; Zaheer Ullah, S.; Chu, Y.-M., Integral inequalities involving strongly convex functions, Journal of Function Spaces, 2018 (2018) · Zbl 1393.26030 · doi:10.1155/2018/6595921
[4] Zhou, W.; Chen, X., On the convergence of a modified regularized Newton method for convex optimization with singular solutions, Journal of Computational and Applied Mathematics, 239, 179-188 (2013) · Zbl 1255.65117
[5] Adil Khan, M.; Chu, Y.-M.; Khan, T. U.; Khan, J., Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Mathematics, 15, 1414-1430 (2017) · Zbl 1378.26012 · doi:10.1515/math-2017-0121
[6] Hyers, D. H.; Ulam, S. M., Approximately convex functions, Proceedings of the American Mathematical Society, 3, 821-828 (1952) · Zbl 0047.29505 · doi:10.1090/S0002-9939-1952-0049962-5
[7] Pečarič, J. E.; Proschan, F.; Tong, Y. L., Convex Functions, Partial Orderings, and Statistical Applications. Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, 187 (1992), Boston, Mass, USA: Academic Press, Boston, Mass, USA · Zbl 0749.26004
[8] Zhao, T.-H.; Chu, Y.-M.; Jiang, Y.-P., Monotonic and logarithmically convex properties of a function involving gamma functions, Journal of Inequalities and Applications, 2009 (2009) · Zbl 1176.33003 · doi:10.1155/2009/728612
[9] Jensen, J. L. W. V., Om konvekse Funktioner og Uligheder mellem Middelværdier, Nyt tidsskrift for matematik. B, 16, 49-68 (1905) · JFM 36.0447.03
[10] Mangasarian, O. L., Pseudo-convex functions, SIAM Journal on Control and Optimization, 3, 281-290 (1965) · Zbl 0138.15702
[11] Dragomir, S. S., Inequalities of Hermite-Hadamard type for \(φ\)-convex functions, http://rgmia.org/papers/v16/v16a87.pdf · Zbl 1355.26025
[12] Dragomir, S. S., Inequalities of Hermite-Hadamard type for \(λ\)-convex functions on linear spaces, http://rgmia.org/papers/v17/v17a13.pdf · Zbl 1342.26050
[13] Varošanec, S., On \(h\)-convexity, Journal of Mathematical Analysis and Applications, 326, 1, 303-311 (2007) · Zbl 1111.26015 · doi:10.1016/j.jmaa.2006.02.086
[14] Rajba, T., On strong delta-convexity and Hermite-Hadamard type inequalities for delta-convex functions of higher order, Mathematical Inequalities & Applications, 18, 1, 267-293 (2015) · Zbl 1307.26014 · doi:10.7153/mia-18-20
[15] Hu, H.; Liu, L., Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hörmander’s condition, Mathematical Notes, 101, 5-6, 830-840 (2017) · Zbl 1373.42015 · doi:10.1134/S0001434617050091
[16] Zhou, X., Weighted sharp function estimate and boundedness for commutator associated with singular integral operator satisfying a variant of Hörmander’s condition, Journal of Mathematical Inequalities, 9, 2, 587-596 (2015) · Zbl 1314.42020 · doi:10.7153/jmi-09-50
[17] Huang, C.; Yang, Z.; Yi, T.; Zou, X., On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, Journal of Differential Equations, 256, 7, 2101-2114 (2014) · Zbl 1297.34084 · doi:10.1016/j.jde.2013.12.015
[18] Huang, C.; Guo, S.; Liu, L., Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón-Zygmund kernel, Journal of Mathematical Inequalities, 8, 3, 453-463 (2014) · Zbl 1304.42036 · doi:10.7153/jmi-08-33
[19] Lu, D., Some sharp inequalities for multilinear integral operators, Journal of Inequalities and Applications, 2013, article 445 (2013) · Zbl 1364.42021 · doi:10.1186/1029-242X-2013-445
[20] Zhou, X., Some sharp function estimates for vector-valued multilinear integral operator, Miskolc Mathematical Notes, 14, 1, 373-387 (2013) · Zbl 1299.42056 · doi:10.18514/MMN.2013.624
[21] Wang, Z.-G.; Zhang, G.-W.; Wen, F.-H., Properties and characteristics of the Srivastava-Khairnar-More integral operator, Applied Mathematics and Computation, 218, 15, 7747-7758 (2012) · Zbl 1244.45006 · doi:10.1016/j.amc.2012.01.038
[22] Wang, H.; Qian, W.-M.; Chu, Y.-M., Optimal bounds for Gaussian arithmetic-geometric mean with applications to complete elliptic integral, Journal of Function Spaces, 2016 (2016) · Zbl 1347.26053 · doi:10.1155/2016/3698463
[23] Chu, H.-H.; Yang, Z.-H.; Chu, Y.-M.; Zhang, W., Generalized Wilker-type inequalities with two parameters, Journal of Inequalities and Applications, 2016, article 187 (2016) · Zbl 1342.26039 · doi:10.1186/s13660-016-1127-8
[24] Zhou, X., Sharp maximal function inequalities and boundedness for Toeplitz type operator associated to singular integral operator with non-smooth kernel, Journal of Inequalities and Applications, 2014, article 141 (2014) · Zbl 1309.42022 · doi:10.1186/1029-242X-2014-141
[25] Xiao, Q.; Li, Q., Generalized lower and upper approximations in quantales, Journal of Applied Mathematics, 2012 (2012) · Zbl 1234.06011 · doi:10.1155/2012/648983
[26] Huang, C.; Peng, C.; Chen, X.; Wen, F., Dynamics analysis of a class of delayed economic model, Abstract and Applied Analysis, 2013 (2013) · Zbl 1273.91314 · doi:10.1155/2013/962738
[27] Adil Khan, M.; Iqbal, A.; Suleman, M.; Chu, Y.-M., Hermite-Hadamard type inequalities for fractional integrals via Green’s function, Journal of Inequalities and Applications, 2018, article 161 (2018) · Zbl 1498.26041 · doi:10.1186/s13660-018-1751-6
[28] Khurshid, Y.; Adil Khan, M.; Chu, Y.-M., Conformable integral inequaliites of the Hermite-Hadamard thpe in terms of GG- and GA-convexities, Journal of Function Spaces, 2019 (2019) · Zbl 1416.26045 · doi:10.1155/2019/6926107
[29] Adil Khan, M.; Wu, S.-H.; Ullah, H.; Chu, Y.-M., Discrete majorization type inequalities for convex functions on rectangles, Journal of Inequalities and Applications, 2019, article 16 (2019) · Zbl 1499.51018 · doi:10.1186/s13660-019-1964-3
[30] Wang, M.-K.; Chu, Y.-M.; Zhang, W., Monotonicity and inequalities involving zero-balanced hypergeometric function, Mathematical Inequalities & Applications, 22, 2, 601-617 (2019) · Zbl 1416.33007 · doi:10.7153/mia-2019-22-42
[31] Wu, J.; Liu, Y., Uniqueness results and convergence of successive approximations for fractional differential equations, Hacettepe Journal of Mathematics and Statistics, 42, 2, 149-158 (2013) · Zbl 1291.34018
[32] Yang, R.-s.; Ou, Y.-h., Inverse coefficient problems for nonlinear elliptic variational inequalities, Acta Mathematicae Applicatae Sinica, 27, 1, 85-92 (2011) · Zbl 1209.35053 · doi:10.1007/s10255-011-0042-5
[33] Liu, Z.; Zhang, Y.; Santos, J.; Ralha, R., On computing complex square roots of real matrices, Applied Mathematics Letters, 25, 10, 1565-1568 (2012) · Zbl 1251.65060 · doi:10.1016/j.aml.2012.01.015
[34] Lin, L.; Liu, Z.-Y., An alternating projected gradient algorithm for nonnegative matrix factorization, Applied Mathematics and Computation, 217, 24, 9997-10002 (2011) · Zbl 1219.65036 · doi:10.1016/j.amc.2011.04.070
[35] Wang, W., High order stable Runge-Kutta methods for nonlinear generalized pantograph equations on the geometric mesh, Applied Mathematical Modelling: Simulation and Computation for Engineering and Environmental Systems, 39, 1, 270-283 (2015) · Zbl 1429.65137 · doi:10.1016/j.apm.2014.05.019
[36] Wang, J.; Chen, X.; Huang, L., The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, Journal of Mathematical Analysis and Applications, 469, 1, 405-427 (2019) · Zbl 1429.34037 · doi:10.1016/j.jmaa.2018.09.024
[37] Wang, F.; Liu, Z., Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order, Advances in Difference Equations, 2012, article 116 (2012) · Zbl 1350.34015 · doi:10.1186/1687-1847-2012-116
[38] Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W., Monotonicity rule for the quotient of two functions and its application, Journal of Inequalities and Applications, 2017, article 106 (2017) · Zbl 1360.26008 · doi:10.1186/s13660-017-1383-2
[39] Qiu, S.-L.; Ma, X.-Y.; Chu, Y.-M., Sharp Landen transformation inequalities for hypergeometric functions, with applications, Journal of Mathematical Analysis and Applications, 474, 2, 1306-1337 (2019) · Zbl 1414.33006 · doi:10.1016/j.jmaa.2019.02.018
[40] Wang, W., A generalized Halanay inequality for stability of nonlinear neutral functional differential equations, Journal of Inequalities and Applications, 2010 (2010) · Zbl 1197.26040 · doi:10.1155/2010/475019
[41] Wang, Z.-G.; Srivastava, H. M.; Yuan, S.-M., Some basic properties of certain subclasses of meromorphically starlike functions, Journal of Inequalities and Applications, 2014, article 29 (2014) · Zbl 1307.30039 · doi:10.1186/1029-242X-2014-29
[42] Li, J.; Liu, F.; Feng, L.; Turner, I., A novel finite volume method for the Riesz space distributed-order advection-diffusion equation, Applied Mathematical Modelling: Simulation and Computation for Engineering and Environmental Systems, 46, 536-553 (2017) · Zbl 1443.65162 · doi:10.1016/j.apm.2017.01.065
[43] Huang, C.; Liu, L., Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator, Publications de l’Institut Mathematique, 92, 106, 165-176 (2012) · Zbl 1289.42040 · doi:10.2298/PIM1206165H
[44] Yang, Z.-H.; Chu, Y.-M.; Zhang, W., High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Applied Mathematics and Computation, 348, 552-564 (2019) · Zbl 1428.33037 · doi:10.1016/j.amc.2018.12.025
[45] Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M., On approximating the quasi-arithmetic mean, Journal of Inequalities and Applications, 2019, article 42 (2019) · Zbl 1499.26229 · doi:10.1186/s13660-019-1991-0
[46] Zhu, E.; Xu, Y., Pathwise estimation of stochastic functional Kolmogorov-type systems with infinite delay, Journal of Inequalities and Applications, 2012, article 171 (2012) · Zbl 1282.34084 · doi:10.1186/1029-242X-2012-171
[47] Chu, H.-H.; Qian, W.-M.; Chu, Y.-M.; Song, Y.-Q., Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means, Journal of Nonlinear Sciences and Applications. JNSA, 9, 5, 3424-3432 (2016) · Zbl 1345.26044 · doi:10.22436/jnsa.009.05.126
[48] Zaheer Ullah, S.; Adil Khan, M.; Chu, Y.-M., Majorization theorems for strongly convex functions, Journal of Inequalities and Applications, 2019, article 58 (2019) · Zbl 1499.26207 · doi:10.1186/s13660-019-2007-9
[49] Wu, S.-H.; Chu, Y.-M., Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, Journal of Inequalities and Applications, 2019, article 57 (2019) · Zbl 1499.26228 · doi:10.1186/s13660-019-2013-y
[50] Hiriart-Urruty, J.-B.; Lemaréchal, C., Fundamentals of Convex Analysis (2001), Berlin, Germany: Springer, Berlin, Germany · Zbl 0998.49001 · doi:10.1007/978-3-642-56468-0
[51] Marshall, A. W.; Olkin, I., Inequalities: Theory of Majorization and its Applications. Inequalities: Theory of Majorization and its Applications, Mathematics in Science and Engineering, 143 (1979), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0437.26007
[52] Chu, Y.-M.; Wang, H.; Zhao, T.-H., Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means, Journal of Inequalities and Applications, 2014, article 299 (2014) · Zbl 1372.26029 · doi:10.1186/1029-242X-2014-299
[53] Bhatia, R., Matrix Analysis (1997), New York, NY, USA: Springer, New York, NY, USA
[54] Horn, R. A.; Johnson, C. R., Matrix Analysis (1990), Cambridge, Mass, USA: Cambridge University Press, Cambridge, Mass, USA · Zbl 0704.15002
[55] Huang, L.; Li, Y.; Zhao, K., Geometry of alternate matrices over Bezout domains, Algebra Colloquium, 20, 2, 197-214 (2013) · Zbl 1408.51005 · doi:10.1142/S1005386713000187
[56] Pečarić, J. E., On some inequalities for functions with nondecreasing increments, Journal of Mathematical Analysis and Applications, 98, 1, 188-197 (1984) · Zbl 0597.26026 · doi:10.1016/0022-247x(84)90287-7
[57] Maligranda, L.; Pečarič, J. E.; Persson, L. E., Weighted Favard and Berwald inequalities, Journal of Mathematical Analysis and Applications, 190, 1, 248-262 (1995) · Zbl 0834.26012 · doi:10.1006/jmaa.1995.1075
[58] Favard, J., Sur les valeurs moyennes, Bulletin des Sciences Mathématiques, 57, 54-64 (1933) · JFM 59.0992.03
[59] Barnett, N. S.; Cerone, P.; Dragomir, S. S., Majorisation inequalities for Stieltjes integrals, Applied Mathematics Letters, 22, 3, 416-421 (2009) · Zbl 1160.26313 · doi:10.1016/j.aml.2008.06.009
[60] Pečarič, J.; Abramovich, S., On new majorization theorems, Rocky Mountain Journal of Mathematics, 27, 3, 903-911 (1997) · Zbl 0906.26015 · doi:10.1216/rmjm/1181071901
[61] Latif, N.; Pečarič, J.; Perič, I., On majorization, Favard and Berwald inequalities, Annals of Functional Analysis, 2, 1, 31-50 (2011) · Zbl 1223.26006 · doi:10.15352/afa/1399900260
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.