×

Unpaired low-dose CT denoising network based on cycle-consistent generative adversarial network with prior image information. (English) Zbl 1428.92063

Summary: The widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server noise and affect radiologists’ judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of well-paired datasets requires multiple scans, resulting the increase of radiation dose. Therefore, well-paired datasets are not readily available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical information. Real-data experiments were carried out to test the performance of the proposed method. The peak signal-to-noise ratio (PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN without prior information. The real LDCT data experiment demonstrates the superiority of the proposed method according to both visual inspection and quantitative evaluation.

MSC:

92C55 Biomedical imaging and signal processing
Full Text: DOI

References:

[1] Brenner, D. J.; Hall, E. J., Cancer risks from CT scans: now we have data, what next?, Radiology, 265, 2, 330-331 (2012) · doi:10.1148/radiol.12121248
[2] Linton, O. W.; Mettler, F. A., National conference on dose reduction in CT, with an emphasis on pediatric patients, American Journal of Roentgenology, 181, 2, 321-329 (2003) · doi:10.2214/ajr.181.2.1810321
[3] Brenner, D. J.; Hall, E. J., Computed tomography—an increasing source of radiation exposure, New England Journal of Medicine, 357, 22, 2277-2284 (2007) · doi:10.1056/nejmra072149
[4] Elbakri, I. A.; Fessler, J. A., Statistical image reconstruction for polyenergetic X-ray computed tomography, IEEE Transactions on Medical Imaging, 21, 2, 89-99 (2002) · doi:10.1109/42.993128
[5] Wang, J.; Li, T.; Xing, L., Iterative image reconstruction for CBCT using edge-preserving prior, Medical Physics, 36, 252-260 (2009) · doi:10.1118/1.3181163
[6] Riviere, P. J. L.; Bian, J.; Vargas, P. A., Penalized-likelihood sinogram restoration for computed tomography, IEEE Transactions on Medical Imaging, 25, 8, 1022-1036 (2006) · doi:10.1109/tmi.2006.875429
[7] Wang, J.; Li, T.; Lu, H.; Liang, Z., Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low dose X-ray computed tomography, IEEE Transactions on Medical Imaging, 25, 10, 1272-1283 (2006) · doi:10.1109/tmi.2006.882141
[8] Zhang, Y.; Zhang, J.; Lu, H., Statistical sinogram smoothing for low-dose CT with segmentation-based adaptive filtering, IEEE Transactions on Nuclear Science, 57, 5, 2587-2598 (2010) · doi:10.1109/tns.2010.2060356
[9] Xie, Q.; Zeng, D.; Zhao, Q., Robust low-dose CT sinogram preprocessing via exploiting noise-generating mechanism, IEEE Transactions on Medical Imaging, 36, 12, 2487-2498 (2017) · doi:10.1109/tmi.2017.2767290
[10] Schilham, A. M. R.; van Ginneken, B.; Gietema, H.; Prokop, M., Local noise weighted filtering for emphysema scoring of low-dose CT images, IEEE Transactions on Medical Imaging, 25, 4, 451-463 (2006) · doi:10.1109/tmi.2006.871545
[11] Borsdorf, A.; Raupach, R.; Flohr, T.; Hornegger, J., Wavelet based noise reduction in CT-images using correlation analysis, IEEE Transactions on Medical Imaging, 27, 12, 1685-1703 (2008) · doi:10.1109/tmi.2008.923983
[12] Chen, Y.; Yang, Z.; Hu, Y., Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means, Physics in Medicine and Biology, 57, 9, 2667-2688 (2012) · doi:10.1088/0031-9155/57/9/2667
[13] Man, B. D.; Basu, S., Distance-driven projection and backprojection in three dimensions, Physics in Medicine and Biology, 49, 11, 2463-2475 (2004) · doi:10.1088/0031-9155/49/11/024
[14] Lewitt, R. M., Multidimensional digital image representations using generalized Kaiser-Bessel window functions, Journal of the Optical Society of America A, 7, 10, 1834-1846 (1990) · doi:10.1364/josaa.7.001834
[15] Whiting, B. R.; Massoumzadeh, P.; Earl, O. A.; O’Sullivan, J. A.; Snyder, D. L.; Williamson, J. F., Properties of preprocessed sinogram data in X-ray computed tomography, Medical Physics, 33, 9, 3290-3303 (2006) · doi:10.1118/1.2230762
[16] Ramani, S.; Fessler, J. A., A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction, IEEE Transactions on Medical Imaging, 31, 3, 677-688 (2012) · doi:10.1109/tmi.2011.2175233
[17] Sidky, E. Y.; Pan, X., Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine and Biology, 53, 17, 4777-4807 (2008) · doi:10.1088/0031-9155/53/17/021
[18] Liu, Y.; Ma, J.; Fan, Y.; Liang, Z., Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction, Physics in Medicine and Biology, 57, 23, 7923-7956 (2012) · doi:10.1088/0031-9155/57/23/7923
[19] Tian, Z.; Jia, X.; Yuan, K.; Pan, T.; Jiang, S. B., Low-dose CT reconstruction via edge-preserving total variation regularization, Physics in Medicine and Biology, 56, 18, 5949-5967 (2011) · doi:10.1088/0031-9155/56/18/011
[20] Xu, Q.; Yu, H.; Mou, X.; Zhang, L.; Hsieh, J.; Wang, G., Low-dose X-ray CT reconstruction via dictionary learning, IEEE Transactions on Medical Imaging, 31, 9, 1682-1697 (2012) · doi:10.1109/TMI.2012.2195669
[21] Zhang, Y.; Mou, X.; Wang, G.; Yu, H., Tensor-based dictionary learning for spectral CT reconstruction, IEEE Transactions on Medical Imaging, 36, 1, 142-154 (2017) · doi:10.1109/tmi.2016.2600249
[22] Choi, J. K.; Dong, B.; Zhang, X., Limited tomography reconstruction via tight frame and simultaneous sinogram extrapolation, Journal of Computational Mathematics, 34, 6, 575-589 (2016) · Zbl 1374.92076 · doi:10.4208/jcm.1605-m2016-0535
[23] Buades, A.; Coll, B.; Morel, J. M., A review of image denoising algorithms, with a new one, Multiscale Modeling & Simulation, 4, 2, 490-530 (2005) · Zbl 1108.94004 · doi:10.1137/040616024
[24] Li, Z.; Yu, L.; Trzasko, J. D., Adaptive nonlocal means filtering based on local noise level for CT denoising, Medical Physics, 41, 1 (2014) · doi:10.1118/1.4851635
[25] Aharon, M.; Elad, M.; Bruckstein, A., K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54, 11, 4311-4322 (2006) · Zbl 1375.94040 · doi:10.1109/tsp.2006.881199
[26] Feruglio, P. F.; Vinegoni, C.; Gros, J.; Sbarbati, A.; Weissleder, R., Block matching 3D random noise filtering for absorption optical projection tomography, Physics in Medicine and Biology, 55, 18, 5401-5415 (2010) · doi:10.1088/0031-9155/55/18/009
[27] Kang, D.; Slomka, P.; Nakazato, R., Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm, Proceedings of the Medical Imaging: Image Processing, International Society for Optics and Photonics
[28] Chen, H.; Zhang, Y.; Zhang, W., aLow-dose CT via convolutional neural network, Biomedical Optics Express, 8, 2, 679-694 (2017), Prague, Czech Republic · doi:10.1364/boe.8.000679
[29] Kang, E.; Min, J.; Ye, J. C., A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction, Medical Physics, 44, 10, e360-e375 (2017) · doi:10.1002/mp.12344
[30] Chen, H.; Zhang, Y.; Kalra, M. K., Low-dose CT with a residual encoder-decoder convolutional neural network (RED-CNN), IEEE Transactions on Medical Imaging, 36, 12, 2524-2535 (2017) · doi:10.1109/tmi.2017.2715284
[31] Johnson, J.; Alahi, A.; Fei-Fei, L., Perceptual losses for real-time style transfer and super-resolution, Proceedings of the European Conference on Computer Vision, Springer
[32] Ledig, C.; Theis, L.; Huszar, F., Photo-realistic single image super-resolution using a generative adversarial network, https://arxiv.org/abs/1609.04802
[33] Wu, D.; Kim, K.; El, F. G., Iterative low-dose CT reconstruction with priors trained by artificial neural network, IEEE Transactions on Medical Imaging, 36, 12, 2479-2486 (2017) · doi:10.1109/tmi.2017.2753138
[34] Goodfellow, I., Nips 2016 tutorial: generative adversarial networks, https://arxiv.org/abs/1701.00160
[35] Wolterink, J. M.; Leiner, T.; Viergever, M. A.; Isgum, I., Generative adversarial networks for noise reduction in low-dose CT, IEEE Transactions on Medical Imaging, 36, 12, 2536-2545 (2017)
[36] Yang, Q.; Yan, P.; Zhang, Y., Low dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss, IEEE Transactions on Medical Imaging, 37, 6, 1348-1357 (2017) · doi:10.1109/tmi.2018.2827462
[37] Yi, X.; Babyn, P., Sharpness-aware low-dose CT denoising using conditional generative adversarial network, Journal of Digital Imaging, 31, 5, 655-669 (2018) · doi:10.1007/s10278-018-0056-0
[38] Zhu, J. Y.; Park, T.; Isola, P.; Efros, A. A., Unpaired image-to-image translation using cycle-consistent adversarial networks, Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV) · doi:10.1109/iccv.2017.244
[39] Yi, Z.; Zhang, H.; Tan, P.; Gong, M., DualGAN: unsupervised dual learning for image-to-image translation, Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV) · doi:10.1109/ICCV.2017.310
[40] Quan, T. M.; Nguyen-Duc, T.; Jeong, W. K., Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss, IEEE Transactions on Medical Imaging, 37, 6, 1488-1497 (2018) · doi:10.1109/tmi.2018.2820120
[41] Wolterink, J. M.; Dinkla, A. M.; Savenije, M. H. F., Deep MR to CT synthesis using unpaired data, Simulation and Synthesis in Medical Imaging, 14-23 (2017), Berlin, Germany: Springer, Berlin, Germany
[42] Jin, C.-B.; Kim, H.; Jung, W., Deep CT to MR synthesis using paired and unpaired data, https://arxiv.org/abs/1805.10790
[43] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M., Generative adversarial nets, Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014)
[44] He, K.; Zhang, X.; Ren, S.; Sun, J., Deep residual learning for image recognition, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) · doi:10.1109/CVPR.2016.90
[45] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 13, 4, 600-612 (2004) · doi:10.1109/tip.2003.819861
[46] Mao, X.; Li, Q.; Xie, H.; Lau, R. Y.; Wang, Z., Multiclass generative adversarial networks with the L2 loss function, https://arxiv.org/abs/1611.04076v1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.