×

Controlled quantum teleportation of superposed coherent state using GHZ entangled coherent state. (English) Zbl 1428.81046

Summary: Controlled quantum teleportation of superposed coherent states using GHZ entangled 3-mode coherent states is studied. Proposed scheme can be implemented experimentally using linear optical components such as a symmetric lossless beam splitter, two phase-shifters and two photon counters. Fidelity is found close to unity for appreciable mean number of photons in coherent states and is 0.99 for mean photon number equal to two.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
94A40 Channel models (including quantum) in information and communication theory
81R30 Coherent states
81V80 Quantum optics

References:

[1] Deutsch, D.: Quantum theory, the church – turing principle and the universal quantum computer. Proceedings of the Royal Society of London A. Mathematical and Physical Sciences 400(1818), 97-117 (1985) · Zbl 0900.81019 · doi:10.1098/rspa.1985.0070
[2] Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[3] Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992) · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[4] Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000) · doi:10.1103/PhysRevA.63.014302
[5] Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000) · doi:10.1103/PhysRevA.62.012313
[6] Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[7] Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998) · doi:10.1103/PhysRevA.58.4394
[8] Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49(2), 1473 (1994) · doi:10.1103/PhysRevA.49.1473
[9] Polkinghorne, R., Ralph, T.: Continuous variable entanglement swapping. Phys. Rev. Lett. 83(11), 2095 (1999) · Zbl 1031.81512 · doi:10.1103/PhysRevLett.83.2095
[10] Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997) · Zbl 1369.81006 · doi:10.1038/37539
[11] Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86(7), 1370 (2001) · doi:10.1103/PhysRevLett.86.1370
[12] Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766 (1963) · Zbl 1371.81166 · doi:10.1103/PhysRev.131.2766
[13] Dodonov, V., Malkin, I., Man’Ko, V.: Even and odd coherent states and excitations of a singular oscillator. Physica 72(3), 597-615 (1974) · doi:10.1016/0031-8914(74)90215-8
[14] Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A 68(4), 042319 (2003) · doi:10.1103/PhysRevA.68.042319
[15] Sanders, B.C.: Review of entangled coherent states. J. Phys. A Math. Theor. 45 (24), 244002 (2012) · Zbl 1248.81084 · doi:10.1088/1751-8113/45/24/244002
[16] Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45(9), 6811 (1992) · doi:10.1103/PhysRevA.45.6811
[17] Park, K., Jeong, H.: Entangled coherent states versus entangled photon pairs for practical quantum-information processing. Phys. Rev. A 82(6), 062325 (2010) · doi:10.1103/PhysRevA.82.062325
[18] Hirota, O., Van Enk, S.J., Nakamura, K., Sohma, M., Kato, K.: Entangled nonorthogonal states and their decoherence properties. arXiv:quant-ph/0101096 (2001)
[19] van Enk, S.J., Hirota, O.: Entangled coherent states: Teleportation and decoherence. Phys. Rev. A 64(2), 022313 (2001) · doi:10.1103/PhysRevA.64.022313
[20] Wang, X.: Quantum teleportation of entangled coherent states. Phys. Rev. A 64(2), 022302 (2001) · doi:10.1103/PhysRevA.64.022302
[21] An, N.B.: Teleportation of coherent-state superpositions within a network. Phys. Rev. A 68(2), 022321 (2003) · doi:10.1103/PhysRevA.68.022321
[22] Prakash, H., Chandra, N., Prakash, R., et al.: Improving the teleportation of entangled coherent states. Phys. Rev. A 75(4), 044305 (2007) · doi:10.1103/PhysRevA.75.044305
[23] Mishra, M.K., Prakash, H.: Teleportation of a two-mode entangled coherent state encoded with two-qubit information. J. Phys. B Atomic Mol. Phys. 43(18), 185501 (2010) · doi:10.1088/0953-4075/43/18/185501
[24] Mishra, M.K., Prakash, H.: Long distance atomic teleportation with as good success as desired. Ann. Phys. Rehabil. Med. 360, 462-476 (2015) · Zbl 1360.81099
[25] Prakash, H., Chandra, N., Prakash, R., Kumar, S.A.: Entanglement diversion between two pairs of entangled coherent states: Fidelity and decoherence. Int. J. Mod. Phys. B 23(04), 585-595 (2009) · Zbl 1170.81334 · doi:10.1142/S0217979209049930
[26] Prakash, H.: Quantum teleportation. In: International Conference on Emerging Trends in Electronic and Photonic Devices & Systems, 2009. ELECTRO09, pp. 18-23. IEEE (2009)
[27] Prakash, H., Chandra, N., Prakash, R.: Shivani: Swapping between two pairs of nonorthogonal entangled coherent states. Int. J. Mod. Phys. B 23(08), 2083-2092 (2009) · Zbl 1170.81335 · doi:10.1142/S0217979209052042
[28] Prakash, H., Chandra, N., Prakash, R.: Shivani: Almost perfect teleportation using 4-partite entangled states. Int. J. Mod. Phys. B 24(17), 3383-3394 (2010) · Zbl 1204.81040 · doi:10.1142/S0217979210053367
[29] Prakash, H., Chandra, N., Prakash, R., Kumar, S.A.: Improving the entanglement diversion between two pairs of entangled coherent states. Int. J. Mod. Phys. B 24(17), 3331-3339 (2010) · Zbl 1204.81034 · doi:10.1142/S0217979210053331
[30] Prakash, H., Maurya, A.K.: Quantum teleportation using entangled 3-qubit states and the ’magic bases’. Opt. Commun. 284(20), 5024-5030 (2011) · doi:10.1016/j.optcom.2011.07.002
[31] Prakash, H., Verma, V.: Quantum teleportation of single qubit mixed information state with werner-like state as resource. arXiv:1305.4259 (2013)
[32] Prakash, R., Pandey, R.K., Prakash, H.: Controlled entanglement diversion using GHZ type entangled coherent state. Int. J. Theor. Phys. https://doi.org/10.1007/s10773-019-04014-w (2019) · Zbl 1422.81040
[33] An, N.B., Kim, J.: Cluster-type entangled coherent states: Generation and application. Phys. Rev. A 80(4), 042316 (2009) · doi:10.1103/PhysRevA.80.042316
[34] Liu, J.C., Li, Y.H., Nie, Y.Y.: Controlled teleportation of an ecs by using a four-mode ctecs. Int. J. Theor. Phys. 50(6), 1852-1857 (2011) · doi:10.1007/s10773-011-0700-7
[35] Jeong, H., An, N.B.: Greenberger-Horne-Zeilinger – type and w-type entangled coherent states: Generation and bell-type inequality tests without photon counting. Phys. Rev. A 74(2), 022104 (2006) · doi:10.1103/PhysRevA.74.022104
[36] Prakash, H., Verma, V.: Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states. Quantum Inf. Process 11(6), 1951-1959 (2012) · Zbl 1263.81090 · doi:10.1007/s11128-011-0348-5
[37] Verma, V., Prakash, H.: Standard quantum teleportation and controlled quantum teleportation of an arbitrary n-qubit information state. Int. J. Theor. Phys. 55(4), 2061-2070 (2016) · Zbl 1338.81116 · doi:10.1007/s10773-015-2846-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.