×

An explicit meshless point collocation method for electrically driven magnetohydrodynamics (MHD) flow. (English) Zbl 1428.76146

Summary: In this paper, we develop a meshless collocation scheme for the numerical solution of magnetohydrodynamics (MHD) flow equations. We consider the transient laminar flow of an incompressible, viscous and electrically conducting fluid in a rectangular duct. The flow is driven by the current produced by electrodes placed on the walls of the duct. The method combines a meshless collocation scheme with the newly developed Discretization Corrected Particle Strength Exchange (DC PSE) interpolation method. To highlight the applicability of the method, we discretize the spatial domain by using uniformly (Cartesian) and irregularly distributed nodes. The proposed solution method can handle high Hartmann (Ha) numbers and captures the boundary layers formed in such cases, without the presence of unwanted oscillations, by employing a local mesh refinement procedure close to the boundaries. The use of local refinement reduces the computational cost. We apply an explicit time integration scheme and we compute the critical time step that ensures stability through the Gershgorin theorem. Finally, we present numerical results obtained using different orientation of the applied magnetic field.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

Mfree2D

References:

[1] Hartmann, J., Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field, Math Fys. Med., 15, 6 (1937)
[2] Shercliff, J., Steady motion of conducting fluids in pipes under transverse magnetic fields, Math. Proc. Camb. Philos. Soc., 49, 136-144 (1953) · Zbl 0050.19404
[3] Hunt, J. C.R., Magnetohydrodynamic flow in rectangular ducts, J. Fluid Mech., 21, 577-590 (1965) · Zbl 0125.18401
[4] Hunt, J. C.R.; Stewartson, K., Magnetohydrodynamic flow in rectangular ducts. II, J. Fluid Mech., 23, 563-581 (1965)
[5] Hunt, J.; Williams, W., Some electrically driven flows in magnetohydrodynamics. Part 1. Theory, J. Fluid Mech., 31, 705-722 (1968) · Zbl 0157.57805
[6] Gold, R. R., Magnetohydrodynamic pipe flow, Part 1, J. Fluid Mech., 21, 577-590 (1965) · Zbl 0125.18401
[7] Baylis, J.; Hunt, J., MHD flow in an annular channel; theory and experiment, J. Fluid Mech., 48, 423-428 (1971)
[8] Tabeling, P.; Chabrerie, J., Magnetohydrodynamic secondary flows at high Hartmann numbers, J. Fluid Mech., 103, 225-239 (1981) · Zbl 0453.76096
[9] Singh, B.; Lal, J., MHD axial flow in a triangular pipe under transverse magnetic field, Indian J. Pure Appl. Math., 9, 101-115 (1978) · Zbl 0383.76094
[10] Singh, B.; Lal, J., MHD axial flow in a triangular pipe under transverse magnetic field parallel to a side of the triangle, Indian J. Technol., 17, 184-189 (1979) · Zbl 0413.76094
[11] Singh, B.; Lal, J., FEM in MHD channel flow problems, Int. J. Numer. Methods Eng., 18, 1104-1111 (1982) · Zbl 0489.76119
[12] Singh, B.; Lal, J., FEM for unsteady MHD flow through pipes with arbitrary wall conductivity, Int. J. Numer. Methods Fluids, 4, 291-302 (1984) · Zbl 0547.76119
[13] Demendy, Z.; Nagy, T., A new algorithm for solution of equations of mhd channel flows at moderate Hartmann numbers, Acta Mech, 123, 135-149 (1997) · Zbl 0902.76058
[14] Tezer-Sezgin, M.; Koksal, S., FEM for solving MHD flow in a rectangular duct, Int. J. Numer. Methods Eng., 28, 445-459 (1989) · Zbl 0669.76140
[15] Shakeri, F.; Dehghan, M. A., Finite volume spectral element method for solving magnetohydrodynamic (MHD) equations, Appl. Numer. Math., 61, 1, 1-23 (2011) · Zbl 1427.76276
[16] Tezer-Sezgin, M., BEM solution of MHD flow in a rectangular duct, Int. J. Numer. Methods Fluids, 18, 937-952 (1994) · Zbl 0814.76063
[17] Singh, B.; Agarwal, P. K., Numerical solution of a singular integral equation appearing, MHD ZAMP, 35, 760-769 (1984) · Zbl 0559.76109
[18] Tezer-Sezgin, M.; Aydın, S. H., Dual reciprocity BEM for MHD flow using radial basis functions, Int. J. Comput. Fluid Dyn., 16, 49-63 (2002) · Zbl 1082.76580
[19] Carabineanu, A.; Dinu, A.; Oprea, I., The application of the boundary element method to the magnetohydrodynamic duct flow, ZAMP, 46, 971-981 (1995) · Zbl 0836.76053
[20] Hosseinzadeh, H.; Dehghan, M.; Mirzaei, D., The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers, Appl. Math. Model., 37, 4, 2337-2351 (2013) · Zbl 1349.76417
[21] Liu, G. R., Mesh Free Methods, Moving Beyond the Finite Elements Method (2002), CRC Press
[22] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and applications to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[23] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[24] Lu, Y. Y.; Belytschko, T.; Gu, L., A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Eng., 113, 397-414 (1994) · Zbl 0847.73064
[25] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 20, 1081-1106 (1995) · Zbl 0881.76072
[26] Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. Numer. Methods Eng., 38, 1655-1679 (1995) · Zbl 0840.73078
[27] Melenk, J. M.; Babuska, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng., 139, 289-314 (1996) · Zbl 0881.65099
[28] Duarte, C. A.; Oden, J. T., An \(h-p\) adaptive method using clouds, Computer Methods in Applied Mechanics and Engineering 1996, 139, 237-262 (1996) · Zbl 0918.73328
[29] Liu, W. K.; Li, S.; Belytschko, T., Moving least square reproducing kernel methods (I) methodology and convergence, Comput. Methods Appl. Mech. Eng., 143, 422-433 (1996)
[30] Zhu, T.; Zhang, J.; Atluri, S. N., A meshless local boundary integral equation (LBIE) method for solving nonlinear problems, Comput. Mech., 22, 174-186 (1998) · Zbl 0924.65105
[31] Atluri, S. N.; Kim, H. G.; Cho, J. Y., A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) methods, Comput. Mech., 24, 348-372 (1999) · Zbl 0977.74593
[32] Atluri, S. N.; Shen, S. P., The Meshless Local Petrov-Galerkin (MLPG) Method (2002), Tech Science Press: Tech Science Press Encino USA · Zbl 1012.65116
[33] Onate, E.; Idelsohn, S.; Zienkiewicz, O.; Taylor, R. L., A finite point method in computational mechanics application to convective transport and fluid flow, Int. J. Numer. Methods Eng., 39, 3839-3866 (1995) · Zbl 0884.76068
[34] Aluru, N. R., A point collocation method based on reproducing kernel approximations, Int. J. Numer. Methods Eng., 47, 1083-1121 (2000) · Zbl 0960.74078
[35] Fairweather, F.; Karageorghis, A., The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9, 1-2, 69-95 (1998) · Zbl 0922.65074
[36] Fox, L.; Henrici, P.; Moler, C. B., Approximations and bounds for eigenvalues of elliptic operators, SIAM J. Numer. Anal., 4, 89-102 (1967) · Zbl 0148.39502
[37] Brackbill, J. U., FLIP M.H.D.: a particle-in-cell method for magnetohydrodynamics, J. Comput. Phys., 96, 163-192 (1991) · Zbl 0726.76078
[38] Jiang, F.; Oliveira, M. S.A.; Sousa, A. C.M., SPH simulation of transition to turbulence for planar shear flow subjected to a streamwise magnetic field, J. Comput. Phys., 217, 485-501 (2006) · Zbl 1160.76398
[39] Verardi, S. L.L.; Machado, J. M.; Shiyou, Y., The application of interpolating MLS approximations to the analysis of MHD flows, Finite Elem. Anal. Des., 39, 1173-1187 (2003)
[40] Bourantas, G. C.; Skouras, E. D.; Loukopoulos, V. C.; Nikiforidis, G. C., An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems, J. Comput. Phys., 228, 8135-8160 (2009) · Zbl 1391.76510
[41] Loukopoulos, V. C.; Bourantas, G. C.; Skouras, E. D.; Nikiforidis, G. C., Localized meshless point collocation method for time-dependent magnetohydrodynamics flow through pipes under a variety of wall conductivity conditions, Comput. Mech., 47, 137-159 (2011) · Zbl 1398.76237
[42] Dehghan, M.; Mirzaei, D., Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes, Comput. Phys. Commun., 180, 1458-1466 (2009) · Zbl 07872387
[43] Dehghan, M.; Mirzaei, D., Meshless local Petrov_Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity, Appl. Numer. Math., 59, 1043-1058 (2009) · Zbl 1159.76034
[44] Dehghan, M.; Salehi, R., A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity, Comput. Mech., 52, 1445-1462 (2013) · Zbl 1398.76234
[45] Dehghan, M.; Mohammadi, V., The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using twodiscretizations: the Crank-Nicolson scheme and the method of lines (MOL), Comput. Math. Appl., 70, 10, 2292-2315 (2015) · Zbl 1443.65120
[46] Dehghan, M.; Haghjoo-Saniji, M., The local radial point interpolation meshless method for solving Maxwell equations, Eng. Comput., 33, 897-918 (2017)
[47] Bourantas, G. C.; Skouras, E. D.; Nikiforidis, G. C., Adaptive support domain implementation on the Moving Least Squares approximation for Mfree methods applied on elliptic and parabolic PDE problems using strong-form description, CMES: Comput. Model. Eng., 43, 1-25 (2009) · Zbl 1232.65153
[48] Kim, D. W.; Liu, W. K., Maximum principle and convergence analysis for the meshfree point collocation method, Siam J. Numer. Anal., 44, 515-539 (2006) · Zbl 1155.65090
[49] Dragos, L., Magneto-fluid Dynamics (1975), Academic Press: Academic Press England
[50] Schrader, B.; Reboux, S.; Sbalzarini, I. F., Discretization correction of general integral PSE operators for particle methods, J. Comput. Phys., 229, 4159-4182 (2010) · Zbl 1334.65196
[51] Bourantas, G. C.; Cheesman, B. L.; Ramaswamy, R.; Sbalzarini, I. F., Using DC PSE operator discretization in Eulerian meshless collocation methods improves their robustness in complex geometries, Comput. Fluids, 136, 285-300 (2016) · Zbl 1390.76645
[52] Degond, P.; Mas-Gallic, S., The weighted particle method for convection-diffusion equations. Part 2: The anisotropic case, Math. Comput., 53, 188, 509-525 (1989) · Zbl 0676.65122
[53] Eldredge, J. D.; Leonard, A.; Colonius, T., A general deterministic treatment of derivatives in particle methods, J. Comput. Phys., 180, 2, 686-709 (2002) · Zbl 1143.76550
[54] Schrader, B., Discretization-corrected PSE Operators for Adaptive Multiresolution Particle Methods (Ph.D. thesis), Diss., (2011), Eidgenossische Technische Hochschule ETH Zurich
[55] Isaacson, E.; Keller, H. B., Analysis of Numerical Methods (1966), Wiley: Wiley New York, Library of Congress Catalog Card Number: 66-17630 · Zbl 0168.13101
[56] Gu, Y. T.; Liu, G. R., Meshless techniques for convection dominated problems, Comput. Mech., 38, 171-182 (2006) · Zbl 1138.76402
[57] Sherliff, J. A., The motion of conducting fluids in pipes under transverse fields, Proc. Camb. Philos. Soc., 49, 1953, 136-144 (1953) · Zbl 0050.19404
[58] Nesliturk, A. I.; Tezer-Sezgin, M., The finite element method for MHD flow at high Hartmann numbers, Comput. Methods Appl. Mech. Eng., 194, 1201-1224 (2005) · Zbl 1091.76036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.