×

Symmetries on manifolds: generalizations of the radial lemma of Strauss. (English) Zbl 1428.46023

Summary: For a compact subgroup \(G\) of the group of isometries acting on a Riemannian manifold \(M\) we investigate subspaces of Besov and Triebel-Lizorkin type which are invariant with respect to the group action. Our main aim is to extend the classical Strauss lemma under suitable assumptions on the Riemannian manifold by proving that \(G\)-invariance of functions implies certain decay properties and better local smoothness. As an application, we obtain inequalities of Caffarelli-Kohn-Nirenberg type for \(G\)-invariant functions. Our results generalize those obtained in [L. Skrzypczak, Rev. Mat. Iberoam. 18, No. 2, 267–299 (2002; Zbl 1036.46028)]. The main tool in our investigations are atomic decompositions adapted to the \(G\)-action in combination with trace theorems.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
53C20 Global Riemannian geometry, including pinching

Citations:

Zbl 1036.46028

References:

[1] Álvarez López, J., Kordyukov, Y., Leichtnam, E.: Riemannian foliations of bounded geometry. Math. Nachr. 287(14-15), 1589-1608 (2014) · Zbl 1304.53020 · doi:10.1002/mana.201300211
[2] Aubin, T.: Nonlinear Problems in Riemannian Geometry. Springer, Berlin (1998) · Zbl 0896.53003 · doi:10.1007/978-3-662-13006-3
[3] Bredon, G.: Introduction to Compact Transformation Groups. Pure and Applied Mathematics, vol. 46. Academic Press, London (1972) · Zbl 0246.57017
[4] Coleman, S., Glazer, V., Martin, A.: Action minima among solutions to a class of euclidean scalar field equations. Commun. Math. Phys. 58, 211-221 (1978) · doi:10.1007/BF01609421
[5] Freitag, D.: Real interpolation of weighted \(L_p\)-spaces. Math. Nachr. 86, 15-18 (1978) · Zbl 0417.46034 · doi:10.1002/mana.19780860103
[6] Große, N., Schneider, C.: Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces. Math. Nachr. 286(16), 1586-1613 (2013) · Zbl 1294.46031 · doi:10.1002/mana.201300007
[7] Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. AMS, Providence (1999) · Zbl 0981.58006
[8] Hebey, E.: Sobolev Spaces on Riemannian Manifolds. LNM 1635. Springer, Berlin (1996) · Zbl 0866.58068 · doi:10.1007/BFb0092907
[9] Hebey, E., Vaugon, M.: Sobolev spaces in the presence of symmetries. J. Math. Pures Appl. 76, 859-881 (1997) · Zbl 0886.58003 · doi:10.1016/S0021-7824(97)89975-8
[10] Kuzin, I., Pohozaev, S.: Entire Solutions of Semilinear Elliptic Equations. Birkhäuser, Basel (1997) · Zbl 0882.35003
[11] Lee, J.M.: Introduction to Smooth Manifolds, 2nd edn. Springer, New York (2013). Graduate Texts in Mathematics 218 · Zbl 1258.53002
[12] Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315-334 (1982) · Zbl 0501.46032 · doi:10.1016/0022-1236(82)90072-6
[13] Myers, S.B., Steenrod, N.E.: The group of isometries of a Riemannian manifold. Ann. Math. 40(2), 400-416 (1939) · JFM 65.1415.03 · doi:10.2307/1968928
[14] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13, 459-469 (1966) · Zbl 0145.18602 · doi:10.1307/mmj/1028999604
[15] Sickel, W., Skrzypczak, L.: Radial subspaces of Besov and Lizorkin-Triebel classes: extended Strauss lemma and compactness of embedding. J. Fourier Anal. Appl. 6, 639-662 (2000) · Zbl 0990.46020 · doi:10.1007/BF02510700
[16] Schneider, C.: On dilation operators in Besov spaces. Rev. Mat. Complut. 22(1), 111-128 (2009) · Zbl 1175.46024 · doi:10.5209/rev_REMA.2009.v22.n1.16324
[17] Schneider, C., Vybíral, J.: On dilation operators in Triebel-Lizorkin spaces. Funct. et Appr. 41(2), 139-162 (2009) · Zbl 1194.46055
[18] Shubin, M.: Spectral theory of elliptic operators on noncompact manifolds. Méthodes semi-classiques, Vol. 1 (Nantes, 1991)., Astérisque 207, 35-108 (1992) · Zbl 0793.58039
[19] Sickel, W., Skrzypczak, L.: On the interplay of regularity and decay in case of radial functions II. Homogeneous spaces. J. Fourier Anal. Appl. 18(3), 548-582 (2012) · Zbl 1254.46039 · doi:10.1007/s00041-011-9205-2
[20] Sickel, W., Skrzypczak, L., Vybíral, J.: On the interplay of regularity and decay in case of radial functions I. Inhomogeneous case. Commun. Contemp. Math. 14(1), 1250005 (2012) · Zbl 1247.46031 · doi:10.1142/S0219199712500058
[21] Skrzypczak, L.: Atomic decompositions on manifolds with bounded geometry. Forum Math. 10, 19-38 (1998) · Zbl 0907.46031 · doi:10.1515/form.10.1.19
[22] Skrzypczak, L.: Rotation invariant subspaces of Besov and Triebel-Lizorkin space: compactness of embeddings, smoothness and decay of functions. Rev. Mat. Iberoam. 18, 267-299 (2002) · Zbl 1036.46028 · doi:10.4171/RMI/319
[23] Skrzypczak, L.: Heat extensions, optimal atomic decompositions and Sobolev embeddings in presence of symmetries on manifolds. Math. Z. 243, 745-773 (2003) · Zbl 1031.58023 · doi:10.1007/s00209-002-0465-z
[24] Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[25] Sickel, W., Triebel, H.: Hölder inequalities and sharp embeddings in function spaces of \(B^s_{pq}\) and \(F^s_{pq}\) type. Z. Anal. Anwend. 14(1), 105-140 (1995) · Zbl 0820.46030 · doi:10.4171/ZAA/666
[26] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library, vol. 18. North-Holland, Amsterdam (1978) · Zbl 0387.46033
[27] Triebel, H.: Theory of Function Spaces I. Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983) · Zbl 1235.46002 · doi:10.1007/978-3-0346-0416-1
[28] Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics, vol. 84. Birkhäuser, Basel (1992) · Zbl 0763.46025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.