×

Steady distribution of the incremental model for bacteria proliferation. (English) Zbl 1428.35623

Summary: We study the mathematical properties of a model of cell division structured by two variables – the size and the size increment – in the case of a linear growth rate and a self-similar fragmentation kernel. We first show that one can construct a solution to the related two dimensional eigenproblem associated to the eigenvalue \(1\) from a solution of a certain one dimensional fixed point problem. Then we prove the existence and uniqueness of this fixed point in the appropriate \(\mathrm{L}^1\) weighted space under general hypotheses on the division rate. Knowing such an eigenfunction proves useful as a first step in studying the long time asymptotic behaviour of the Cauchy problem.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35P05 General topics in linear spectral theory for PDEs
45K05 Integro-partial differential equations
45P05 Integral operators
92D25 Population dynamics (general)
35A22 Transform methods (e.g., integral transforms) applied to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] G. I. Bell; E. C. Anderson, Cell growth and division: Ⅰ. a mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophysical Journal, 7, 329-351 (1967)
[2] E. Bernard, M. Doumic and P. Gabriel, Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts, Kinetic Related Models, to appear, arXiv: 1609.03846. · Zbl 1420.35431
[3] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. · Zbl 1220.46002
[4] M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl. (9), 96 (2011), 334-362. · Zbl 1235.35034
[5] B. de Pagter, Irreducible compact operators, Math. Z., 192, 149-153 (1986) · Zbl 0607.47033 · doi:10.1007/BF01162028
[6] M. Doumic, Analysis of a population model structured by the cells molecular content, Math. Model. Nat. Phenom., 2, 121-152 (2007) · Zbl 1337.92174 · doi:10.1051/mmnp:2007006
[7] M. Doumic; M. Hoffmann; N. Krell; L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree, Bernoulli, 21, 1760-1799 (2015) · Zbl 1388.62318 · doi:10.3150/14-BEJ623
[8] M. Doumic Jauffret; P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20, 757-783 (2010) · Zbl 1201.35086 · doi:10.1142/S021820251000443X
[9] Y. Du, Order structure and topological methods in nonlinear partial differential equations, Vol. 1. Maximum principles and applications, Series in Partial Differential Equations and Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. Maximum principles and applications. · Zbl 1202.35043
[10] A. J. Hall; G. C. Wake; P. W. Gandar, Steady size distributions for cells in one-dimensional plant tissues, J. Math. Biol., 30, 101-123 (1991) · Zbl 0739.92009 · doi:10.1007/BF00160330
[11] M. Lerch, Sur un point de la théorie des fonctions géné ratrices d’Abel, Acta Math., 27, 339-351 (1903) · JFM 34.0424.03 · doi:10.1007/BF02421315
[12] J. A. J. Metz and O. Diekmann, editors, The Dynamics of Physiologically Structured Populations, volume 68 of Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1986. · Zbl 0614.92014
[13] P. Michel; S. Mischler; B. Perthame, General entropy equations for structured population models and scattering, C. R., Math., Acad. Sci. Paris, 338, 697-702 (2004) · Zbl 1049.35070 · doi:10.1016/j.crma.2004.03.006
[14] P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, J. Math. Pures Appl. (9), 84 (2005), 1235-1260. · Zbl 1085.35042
[15] S. Mischler; B. Perthame; L. Ryzhik, Stability in a nonlinear population maturation model, Math. Models Methods Appl. Sci., 12, 1751-1772 (2002) · Zbl 1020.92025 · doi:10.1142/S021820250200232X
[16] S. Mischler; J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33, 849-898 (2016) · Zbl 1357.47044 · doi:10.1016/j.anihpc.2015.01.007
[17] A. Olivier, How does variability in cells aging and growth rates influence the malthus parameter?, Kinetic and Related Models, 10, 481-512 (2017) · Zbl 1352.35206 · doi:10.3934/krm.2017019
[18] B. Perthame, Transport Equations in Biology, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007. · Zbl 1185.92006
[19] B. Perthame; L. Ryzhik, Exponential decay for the fragmentation or cell-division equation, J. Differential Equations, 210, 155-177 (2005) · Zbl 1072.35195 · doi:10.1016/j.jde.2004.10.018
[20] J. D. F. Richard L. Burden, Numerical Analysis, Boston, MA: PWS Publishing Company; London: ITP International Thomson Publishing, 5th ed. edition, 1993. · Zbl 0788.65001
[21] M. Rotenberg, Transport theory for growing cell populations, J. Theoret. Biol., 103, 181-199 (1983) · doi:10.1016/0022-5193(83)90024-3
[22] J. T. Sauls; D. Li; S. Jun, Adder and a coarse-grained approach to cell size homeostasis in bacteria, Current Opinion in Cell Biology, 38, 38-44 (2016) · doi:10.1016/j.ceb.2016.02.004
[23] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York-Heidelberg, 1974. · Zbl 0296.47023
[24] J. W. Sinko; W. Streifer, A new model for age-size structure of a population, Ecology, 48, 910-918 (1967) · doi:10.2307/1934533
[25] S. Taheri-Araghi; S. Bradde; J. T. Sauls; N. S. Hill; P. A. Levin; J. Paulsson; M. Vergassola; S. Jun, Cell-size control and homeostasis in bacteria, Current Biology, 25, 385-391 (2015)
[26] G. F. Webb, Dynamics of populations structured by internal variables, Math. Z., 189, 319-335 (1985) · Zbl 0554.92009 · doi:10.1007/BF01164156
[27] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, volume 89 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1985. · Zbl 0555.92014
[28] G. F. Webb, An operator-theoretic formulation of asynchronous exponential growth, Trans. Amer. Math. Soc., 303, 751-763 (1987) · Zbl 0654.47021 · doi:10.1090/S0002-9947-1987-0902796-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.