×

Two exponential-type integrators for the “good” Boussinesq equation. (English) Zbl 1428.35425

Summary: We introduce two exponential-type integrators for the “good” Boussinesq equation. They are of orders one and two, respectively, and they require lower spatial regularity of the solution compared to classical exponential integrators. For the first integrator, we prove first-order convergence in \(H^r\) for solutions in \(H^{r+1}\) with \(r>1/2\). This new integrator even converges (with lower order) in \(H^r\) for solutions in \(H^r\), i.e., without any additional smoothness assumptions. For the second integrator, we prove second-order convergence in \(H^r\) for solutions in \(H^{r+3}\) with \(r>1/2\) and convergence in \(L^2\) for solutions in \(H^3\). Numerical results are reported to illustrate the established error estimates. The experiments clearly demonstrate that the new exponential-type integrators are favorable over classical exponential integrators for initial data with low regularity.

MSC:

35Q40 PDEs in connection with quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs

References:

[1] Baldi, P.: Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 33-77 (2013) · Zbl 1285.35090 · doi:10.1016/j.anihpc.2012.06.001
[2] Baumstark, S., Schratz, K.: Uniformly accurate oscillatory integrators for the Klein-Gordon-Zakharov system from low- to high-plasma frequency regimes. SIAM J. Numer. Anal. 57, 429-457 (2019) · Zbl 1441.76086 · doi:10.1137/18M1177184
[3] Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comput. 87, 1227-1254 (2018) · Zbl 1384.65088 · doi:10.1090/mcom/3263
[4] Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. Funct. Anal. 3, 209-262 (1993) · Zbl 0787.35098 · doi:10.1007/BF01895688
[5] Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55-108 (1872) · JFM 04.0493.04
[6] Bratsos, A.: A second order numerical scheme for the solution of the one-dimensional Boussinesq equation. Numer. Algorithms 46, 45-58 (2007) · Zbl 1128.65063 · doi:10.1007/s11075-007-9126-y
[7] Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31, 202-224 (2015) · Zbl 1327.65195 · doi:10.1002/num.21899
[8] De Frutos, J., Ortega, T., Sanz-Serna, J.M.: Pseudospectral method for the “good” Boussinesq equation. Math. Comput. 57, 109-122 (1991) · Zbl 0735.65089
[9] Dehghan, M., Salehi, R.: A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation. Appl. Math. Model. 36, 1939-1956 (2012) · Zbl 1243.76069 · doi:10.1016/j.apm.2011.07.075
[10] Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 177-189 (1979) · Zbl 0406.70012 · doi:10.1007/BF01601932
[11] Fang, Y., Grillakis, M.: Existence and uniqueness for Boussinesq type equations on a circle. Commun. Partial Differ. Equ. 21, 1253-1277 (1996) · Zbl 0861.35053 · doi:10.1080/03605309608821225
[12] Farah, L.G.: Local solutions in Sobolev spaces with negative indices for the “good” Boussinesq equation. Commun. Partial Differ. Equ. 34, 52-73 (2009) · Zbl 1173.35682 · doi:10.1080/03605300802682283
[13] Farah, L.G., Scialom, M.: On the periodic “good” Boussinesq equation. Proc. Am. Math. Soc. 138, 953-964 (2010) · Zbl 1196.35145 · doi:10.1090/S0002-9939-09-10142-9
[14] Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381-397 (1961) · Zbl 0163.39002 · doi:10.1007/BF01386037
[15] Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209-286 (2010) · Zbl 1242.65109 · doi:10.1017/S0962492910000048
[16] Hofmanová, M., Schratz, K.: An exponential-type integrator for the KdV equation. Numer. Math. 136, 1117-1137 (2017) · Zbl 1454.65034 · doi:10.1007/s00211-016-0859-1
[17] Holden, H., Lubich, C., Risebro, N.: Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comput. 82, 173-185 (2013) · Zbl 1260.35184 · doi:10.1090/S0025-5718-2012-02624-X
[18] Kishimoto, N.: Sharp local well-posedness for the “good” Boussinesq equation. J. Differe. Equ. 254, 2393-2433 (2013) · Zbl 1266.35006 · doi:10.1016/j.jde.2012.12.008
[19] Knöller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data. arXiv:1807.01254 (2018) · Zbl 1422.65222
[20] Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141-2153 (2008) · Zbl 1198.65186 · doi:10.1090/S0025-5718-08-02101-7
[21] Manoranjan, V.S., Mitchell, A., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Comput. 5, 946-957 (1984) · Zbl 0555.65080 · doi:10.1137/0905065
[22] Manoranjan, V.S., Ortega, T., Sanz-Serna, J.M.: Soliton and antisoliton interactions in the “good” Boussinesq equation. J. Math. Phys. 29, 1964-1968 (1988) · Zbl 0673.35089 · doi:10.1063/1.527850
[23] Oh, S., Stefanov, A.: Improved local well-posedness for the periodic “good” Boussinesq equation. J. Differ. Equ. 254, 4047-4065 (2013) · Zbl 1290.35206 · doi:10.1016/j.jde.2013.02.006
[24] Ortega, T., Sanz-Serna, J.M.: Nonlinear stability and convergence of finite-difference methods for the “good” Boussinesq equation. Numer. Math. 58, 215-229 (1990) · Zbl 0749.65082 · doi:10.1007/BF01385620
[25] Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731-755 (2018) · Zbl 1402.65098 · doi:10.1007/s10208-017-9352-1
[26] Wang, H., Esfahani, A.: Well-posedness for the Cauchy problem associated to a periodic Boussinesq equation. Nonlinear Anal. 89, 267-275 (2013) · Zbl 1284.35353 · doi:10.1016/j.na.2013.04.011
[27] Yan, J., Zhang, Z.: New energy-preserving schemes using Hamiltonian boundary value and Fourier pseudospectral methods for the numerical solution of the “good” Boussinesq equation. Comput. Phys. Commun. 201, 33-42 (2016) · Zbl 1348.76107 · doi:10.1016/j.cpc.2015.12.013
[28] Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting numerical scheme for the “good” Boussinesq equation. Appl. Numer. Math. 119, 179-193 (2017) · Zbl 1368.65203 · doi:10.1016/j.apnum.2017.04.006
[29] Zhang, C., Huang, J., Wang, C., Yue, X.: On the operator splitting and integral equation preconditioned deferred correction methods for the “good” Boussinesq equation. J. Sci. Comput. 75, 687-712 (2018) · Zbl 1398.65167 · doi:10.1007/s10915-017-0552-2
[30] Zhao, X.: On error estimates of an exponential wave integrator sine pseudospectral method for the Klein-Gordon-Zakharov system. Numer. Methods Partial Differ. Equ. 32, 266-291 (2016) · Zbl 1345.65056 · doi:10.1002/num.21994
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.