×

Least action principles for incompressible flows and geodesics between shapes. (English) Zbl 1428.35376

Summary: As V. I. Arnol’d observed in the 1960s [Ann. Inst. Fourier 16, No. 1, 319–361 (1966; Zbl 0148.45301)], the Euler equations of incompressible fluid flow correspond formally to geodesic equations in a group of volume-preserving diffeomorphisms. Working in an Eulerian framework, we study incompressible flows of shapes as critical paths for action (kinetic energy) along transport paths constrained to have characteristic-function densities. The formal geodesic equations for this problem are Euler equations for incompressible, inviscid potential flow of fluid with zero pressure and surface tension on the free boundary. The problem of minimizing this action exhibits an instability associated with microdroplet formation, with the following outcomes: any two shapes of equal volume can be approximately connected by an Euler spray – a countable superposition of ellipsoidal geodesics. The infimum of the action is the Wasserstein distance squared, and is almost never attained except in dimension 1. Every Wasserstein geodesic between bounded densities of compact support provides a solution of the (compressible) pressureless Euler system that is a weak limit of (incompressible) Euler sprays.

MSC:

35Q35 PDEs in connection with fluid mechanics
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
35J96 Monge-Ampère equations
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)
53C22 Geodesics in global differential geometry
76B45 Capillarity (surface tension) for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography
35R35 Free boundary problems for PDEs

Citations:

Zbl 0148.45301

Software:

EMD

References:

[1] Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Modelling and Optimisation of Flows on Networks, vol. 2062 of Lecture Notes in Mathematics, pp. 1-155. Springer, Heidelberg (2013)
[2] Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics, 2nd edn. ETH Zürich, Birkhäuser Verlag, Basel (2008) · Zbl 1145.35001
[3] Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16, 319-361 (1966) · Zbl 0148.45301 · doi:10.5802/aif.233
[4] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2nd ed. With a foreword by Hédy Attouch (2017) · Zbl 1359.26003
[5] Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61, 139-157 (2005) · Zbl 1477.68459 · doi:10.1023/B:VISI.0000043755.93987.aa
[6] Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375-393 (2000) · Zbl 0968.76069 · doi:10.1007/s002110050002
[7] Braides, A.: \[ \Gamma\] Γ-Convergence for Beginners. Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford (2002) · Zbl 1198.49001
[8] Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375-417 (1991) · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[9] Brenier, Y., Otto, F., Seis, C.: Upper bounds on coarsening rates in demixing binary viscous liquids. SIAM J. Math. Anal. 43, 114-134 (2011) · Zbl 1226.82045 · doi:10.1137/090775142
[10] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam; Elsevier, New York. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50) (1973) · Zbl 0252.47055
[11] Bruveris, M., Michor, P.W., Mumford, D.: Geodesic completeness for Sobolev metrics on the space of immersed plane curves. Forum Math. Sigma 2, e19-e38 (2014) · Zbl 1315.58009 · doi:10.1017/fms.2014.19
[12] Bruveris, M., Vialard, F.-X.: On completeness of groups of diffeomorphisms. J. Eur. Math. Soc. 19, 1507-1544 (2017) · Zbl 1370.58003 · doi:10.4171/JEMS/698
[13] Caffarelli, L.A.: Some regularity properties of solutions of Monge Ampère equation. Comm. Pure Appl. Math. 44, 965-969 (1991) · Zbl 0761.35028 · doi:10.1002/cpa.3160440809
[14] Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20, 829-930 (2007) · Zbl 1123.35038 · doi:10.1090/S0894-0347-07-00556-5
[15] Coutand, D., Shkoller, S.: A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete Contin. Dyn. Syst. Ser. S 3, 429-449 (2010) · Zbl 1210.35163 · doi:10.3934/dcdss.2010.3.429
[16] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer, Berlin: Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat. Translated from the French by John C, Amson (1990) · Zbl 0766.47001
[17] De Philippis, G., Figalli, A.: The Monge-Ampère equation and its link to optimal transportation. Bull. Am. Math. Soc. (N.S.) 51, 527-580 (2014) · Zbl 1515.35005 · doi:10.1090/S0273-0979-2014-01459-4
[18] De Philippis, G., Figalli, A.: Partial regularity for optimal transport maps. Publ. Math. Inst. Hautes Études Sci. 121, 81-112 (2015) · Zbl 1325.49051 · doi:10.1007/s10240-014-0064-7
[19] Dirichlet, P.G.L.: Untersuchungen über ein Problem der Hydrodynamik, vol. 8, Dieterichschen Buchhandlung (1860) · ERAM 058.1538cj
[20] Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory, With the Assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7. Interscience, New York/London (1958) · Zbl 0084.10402
[21] Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587-600 (1998) · Zbl 0949.49002 · doi:10.1090/qam/1632326
[22] Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(2), 102-163 (1970) · Zbl 0211.57401 · doi:10.2307/1970699
[23] Evans, L.C., Gariepy, R.F.: Measure Theory and fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[24] Figalli, A.: Regularity properties of optimal maps between nonconvex domains in the plane. Comm. Partial Differ. Equ. 35, 465-479 (2010) · Zbl 1193.35086 · doi:10.1080/03605300903307673
[25] Figalli, A., Kim, Y.-H.: Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete Contin. Dyn. Syst. 28, 559-565 (2010) · Zbl 1193.35087 · doi:10.3934/dcds.2010.28.559
[26] Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. J. Math. Imaging Vis. 35, 86-102 (2009) · Zbl 1490.68248 · doi:10.1007/s10851-009-0156-z
[27] Gangbo, W., McCann, R.J.: Shape recognition via Wasserstein distance. Q. Appl. Math. 58, 705-737 (2000) · Zbl 1039.49038 · doi:10.1090/qam/1788425
[28] García Trillos, N., Slepčev, D.: Continuum limit of total variation on point clouds. Arch. Ration. Mech. Anal. 220, 193-241 (2016) · Zbl 1336.68215 · doi:10.1007/s00205-015-0929-z
[29] Gay-Balmaz, F., Holm, D.D., Ratiu, T.S.: Geometric dynamics of optimization. Commun. Math. Sci. 11, 163-231 (2013) · Zbl 1271.49003 · doi:10.4310/CMS.2013.v11.n1.a6
[30] Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. 56, 617-694 (1998) · Zbl 0952.92016 · doi:10.1090/qam/1668732
[31] Haker, S., Zhu, L., Tannembaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60, 225-240 (2004) · Zbl 1477.68510 · doi:10.1023/B:VISI.0000036836.66311.97
[32] Haraux, A.: Nonlinear Evolution Equations-Global Behavior of Solutions. Lecture Notes in Mathematics, vol. 841. Springer, Berlin (1981) · Zbl 0461.35002
[33] Holm, D.D., Trouvé, A., Younes, L.: The Euler-Poincaré theory of metamorphosis. Q. Appl. Math. 67, 661-685 (2009) · Zbl 1186.68413 · doi:10.1090/S0033-569X-09-01134-2
[34] Jost, J.: Riemannian Geometry and Geometric Analysis, 6th edn. Universitext, Springer, Heidelberg (2011) · Zbl 1227.53001 · doi:10.1007/978-3-642-21298-7
[35] Knott, M., Smith, C.S.: On the optimal mapping of distributions. J. Optim. Theory Appl. 43, 39-49 (1984) · Zbl 0519.60010 · doi:10.1007/BF00934745
[36] Lamb, H.: Hydrodynamics, Cambridge Mathematical Library, 6th edn. Cambridge University Press, Cambridge (1993). With a foreword by R. A. Caflisch [Russel E. Caflisch] · Zbl 0828.01012
[37] Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(2), 109-194 (2005) · Zbl 1095.35021 · doi:10.4007/annals.2005.162.109
[38] Liu, J.-G., Pego, R.L., Slepčev, D.: Euler sprays and Wasserstein geometry of the space of shapes. arXiv:1604.03387v1
[39] Longuet-Higgins, M.S.: A class of exact, time-dependent, free-surface flows. J. Fluid Mech. 55, 529-543 (1972) · Zbl 0257.76013 · doi:10.1017/S0022112072001995
[40] McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153-179 (1997) · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[41] Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217-245 (2005) · Zbl 1083.58010
[42] Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1-48 (2006) · Zbl 1101.58005 · doi:10.4171/JEMS/37
[43] Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22, 130-185 (1976) · Zbl 0364.49003 · doi:10.1016/0022-1236(76)90017-3
[44] Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26, 101-174 (2001) · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[45] Rubner, Y., Tomassi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99-121 (2000) · Zbl 1012.68705 · doi:10.1023/A:1026543900054
[46] Rumpf, M., Wirth, B.: Discrete geodesic calculus in shape space and applications in the space of viscous fluidic objects. SIAM J. Imaging Sci. 6, 2581-2602 (2013) · Zbl 1279.68337 · doi:10.1137/120870864
[47] Santambrogio, F.: Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations and Their Applications, Vol. 87. Birkhäuser/Springer, Cham (2015); Calculus of Variations, PDEs, and Modeling · Zbl 1401.49002
[48] Schmitzer, B., Schnörr, C.: Contour manifolds and optimal transport. arXiv:1309.2240 (2013) · Zbl 1304.68192
[49] Schmitzer, B., Schnörr, C.: Globally optimal joint image segmentation and shape matching based on Wasserstein modes. J. Math. Imaging Vis. 52, 436-458 (2015) · Zbl 1343.68277 · doi:10.1007/s10851-014-0546-8
[50] Thompson, D.W.: On Growth and Form. Cambridge University Press, Cambridge (1917)
[51] Trouvé, A.: Action de groupe de dimension infinie et reconnaissance de formes. C. R. Acad. Sci. Paris Sér. I Math. 321, 1031-1034 (1995) · Zbl 0855.57035
[52] Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003) · Zbl 1106.90001
[53] Villani, C.: Optimal Transport, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009); Old and New · Zbl 1156.53003
[54] Wang, W., Ozolek, J.A., Slepčev, D., Lee, A.B., Chen, C., Rohde, G.K.: An optimal transportation approach for nuclear structure-based pathology. IEEE Trans. Med. Imaging 30, 621-631 (2011) · doi:10.1109/TMI.2010.2089693
[55] Wang, W., Slepčev, D., Basu, S., Ozolek, J.A., Rohde, G.K.: A linear optimal transportation framework for quantifying and visualizing variations in sets of images. Int. J. Comput. Vis. 101, 254-269 (2013) · Zbl 1259.68222 · doi:10.1007/s11263-012-0566-z
[56] Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: A continuum mechanical approach to geodesics in shape space. Int. J. Comput. Vis. 93, 293-318 (2011) · Zbl 1235.68309 · doi:10.1007/s11263-010-0416-9
[57] Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130, 39-72 (1997) · Zbl 0892.76009 · doi:10.1007/s002220050177
[58] Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12, 445-495 (1999) · Zbl 0921.76017 · doi:10.1090/S0894-0347-99-00290-8
[59] Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565-586 (1998). (electronic) · Zbl 0907.68158 · doi:10.1137/S0036139995287685
[60] Younes, L.: Shapes and Diffeomorphisms, Applied Mathematical Sciences, vol. 171. Springer, Berlin (2010) · Zbl 1205.68355
[61] Younes, L., Michor, P.W., Shah, J., Mumford, D.: A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19, 25-57 (2008) · Zbl 1142.58013 · doi:10.4171/RLM/506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.