×

Invariance properties of Wronskian type determinants of classical and classical discrete orthogonal polynomials. (English) Zbl 1428.33022

Let \((p_n)_n\) be a classical discrete family of orthogonal polynomials. For a finite set \(F=\{f_1,\ldots,f_k\}\) of nonnegative integers the Casorati determinant is the determinant of the form \[ \det(p_{f_i}(x+j-1))_{i,j=0,\ldots,k}, \quad f_i\in F, \ \ i=0,\ldots,k. \] For example, if \((p_n)_n\) is the family of Charlier polynomials, then the above, denoted by \(C^a_{F,x}\), is called the Casorati-Charlier determinant.
The authors prove some invariance properties for the Casorati determinant for Charlier, Meixner and Hahn polynomials \((p_n)_n\). Taking limits the authors also obtain some invariance properties for Wronskian type determinants for Hermite, Laguerre and Jacobi polynomials. For example, the authors show that if the family of Charlier polynomials \((p_n)_n\) is “normalized by taking its leading coefficient equal to \(\frac{1}{n!}\)”, then for each \(a\not=0\) and a finite set \(F\) of nonnegative integers the following holds \[ C^a_{F,x}=(-1)^{w_F} C^{-a}_{I(F),-x}, \] where \(w_F\) is the degree of \(C^a_{F,x}\) (as a polynomial of \(x\)) and \[ I(F)=\{1,2,\ldots, \max F\}\setminus\{\max F-f:\, f\in F\}. \]

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
Full Text: DOI

References:

[1] Bonneux, N., Exceptional Jacobi polynomials, J. Approx. Theory, 239, 72-112 (2019) · Zbl 1410.33026
[2] Bonneux, N.; Kuijlaars, A. B., Exceptional Laguerre polynomials, Stud. Appl. Math., 141, 547-595 (2018) · Zbl 1408.33019
[3] Chihara, T., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach Science Publishers · Zbl 0389.33008
[4] Christoffel, E. B., Über die Gaussische Quadratur und eine Verallgemeinerung derselben, J. Reine Angew. Math., 55, 61-82 (1858) · ERAM 055.1450cj
[5] Dimitrov, D. K., Higher order Turán inequalities, Proc. Amer. Math. Soc., 126, 2033-2037 (1998) · Zbl 0891.30016
[6] Durán, A. J., Orthogonal polynomials satisfying higher order difference equations, Constr. Approx., 36, 459-486 (2012) · Zbl 1264.42006
[7] Durán, A. J., Using \(D\)-operators to construct orthogonal polynomials satisfying higher order difference or differential equations, J. Approx. Theory, 174, 10-53 (2013) · Zbl 1286.34114
[8] Durán, A. J., Symmetries for Casorati determinants of classical discrete orthogonal polynomials, Proc. Amer. Math. Soc., 142, 915-930 (2014) · Zbl 1284.42079
[9] Durán, A. J., Wronskian type determinants of orthogonal polynomials, Selberg type formulas and constant term identities, J. Combin. Theory Ser. A, 124, 57-96 (2014) · Zbl 1292.33013
[10] Durán, A. J., Exceptional Charlier and Hermite orthogonal polynomials, J. Approx. Theory, 182, 29-58 (2014) · Zbl 1298.33016
[11] Durán, A. J., Exceptional Meixner and Laguerre orthogonal polynomials, J. Approx. Theory, 184, 176-208 (2014) · Zbl 1295.33013
[12] Durán, A. J., Constructing bispectral dual Hahn polynomials, J. Approx. Theory, 189, 1-28 (2015) · Zbl 1306.33017
[13] Durán, A. J., Exceptional Hahn and Jacobi orthogonal polynomials, J. Approx. Theory, 214, 9-48 (2017) · Zbl 1356.42018
[14] Durán, A. J.; Arvesú, J., \(q\)-Casorati determinants of some \(q\)-classical orthogonal polynomials, Proc. Amer. Math. Soc., 144, 1655-1668 (2016) · Zbl 1335.42030
[15] Durán, A. J.; de la Iglesia, M. D., Constructing bispectral orthogonal polynomials from the classical discrete families of Charlier, Meixner and Krawtchouk, Constr. Approx., 41, 49-91 (2015) · Zbl 1312.33028
[16] Durán, A. J.; de la Iglesia, M. D., Constructing Krall-Hahn orthogonal polynomials, J. Math. Anal. Appl., 424, 361-384 (2015) · Zbl 1309.33013
[17] Durán, A. J.; Pérez, M.; Varona, J. L., Some conjecture on Wronskian and Casorati determinants of orthogonal polynomials, Exp. Math., 24, 123-132 (2015) · Zbl 1315.42015
[18] Felder, G.; Hemery, A. D.; Veselov, A. P., Zeros of Wronskians of Hermite polynomials and Young diagrams, Phys. D, 241, 2131-2137 (2012) · Zbl 1258.33005
[19] Filipuk, G.; Zhang, L., On certain Wronskians of multiple orthogonal polynomials, SIGMA, 10, 103 (2014), 19 pages · Zbl 1314.42029
[20] Gómez-Ullate, D.; Kamran, N.; Milson, R., An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359, 352-367 (2009) · Zbl 1183.34033
[21] Gómez-Ullate, D.; Kamran, N.; Milson, R., An extension of Bochner’s problem: exceptional invariant subspaces, J. Approx. Theory, 162, 987-1006 (2010) · Zbl 1214.34079
[22] Gómez-Ullate, D.; Grandati, Y.; Milson, R., Rational extensions of the quantum Harmonic oscillator and exceptional Hermite polynomials, J. Phys. A, 47, Article 015203 pp. (2014) · Zbl 1283.81059
[23] Gómez-Ullate, D.; Grandati, Y.; Milson, R., Durfee rectangles and pseudo-Wronskian equivalences for Hermite polynomials, Stud. Appl. Math., 141, 596-625 (2018) · Zbl 1408.33021
[24] Grandati, Y., Multistep DBT and regular rational extensions of the isotonic oscillator, Ann. Phys. (N.Y.), 327, 2411 (2012) · Zbl 1255.81169
[25] Ismail, M. E., Determinants with orthogonal polynomial entries, J. Comput. Appl. Math., 178, 255-266 (2005) · Zbl 1083.15011
[26] Ismail, M. E.; Laforgia, A., Monotonicity properties of determinants of special functions, Constr. Approx., 26, 1-9 (2007) · Zbl 1117.33004
[27] Karlin, S.; Szegő, G., On certain determinants whose elements are orthogonal polynomials, J. Anal. Math., 8, 1-157 (1961) · Zbl 0116.27901
[28] Koekoek, R.; Lesky, P. A.; Swarttouw, L. F., Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues (2010), Springer-Verlag: Springer-Verlag Berlin · Zbl 1200.33012
[29] Leclerc, B., On certain formulas of Karlin and Szegő, Sém. Lothar. Combin., 41 (1998), B41d · Zbl 0916.05076
[30] Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B., Classical Orthogonal Polynomials of a Discrete Variable (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0743.33001
[31] Odake, S.; Sasaki, R., Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B, 679, 414-417 (2009)
[32] Odake, S.; Sasaki, R., Dual Christoffel transformations, Progr. Theoret. Phys., 126, 1-34 (2011) · Zbl 1230.81031
[33] Odake, S.; Sasaki, R., Krein-Adler transformations for shape-invariant potentials and pseudo virtual states, J. Phys. A, 46, Article 245201 pp. (2013), (24pp) · Zbl 1269.81043
[34] Odake, S.; Sasaki, R., Casoratian identities for the Wilson and Askey-Wilson polynomials, J. Approx. Theory, 193, 184-209 (2015) · Zbl 1314.33011
[35] Quesne, C., Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A, 41, 392001-392007 (2008) · Zbl 1192.81174
[36] Turán, P., On the zeros of the polynomials of Legendre, Čas. Pěst. Math. Fys., 75, 113-122 (1950) · Zbl 0040.32303
[37] Szegő, G., Orthogonal Polynomials (1959), American Mathematical Society: American Mathematical Society Providence, RI · JFM 61.0386.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.