×

Fast and stable algorithms for high-order pseudo Zernike moments and image reconstruction. (English) Zbl 1427.94010

Summary: Pseudo Zernike moments are broadly applied in the fields of image processing and pattern recognition. In this paper, we propose fast and stable methods for calculating high-order Pseudo Zernike moments. A new recurrence is introduced with the addition of a proof. Combining with the Farey sequence, the proposed method is adequate for fast computation. Furthermore, by collaborating with some procedures such as filter method or patch method, we can enhance the accuracy dramatically. The experimental results show that it takes 8.360s to compute the top 500-order pseudo Zernike moments of an image with 512 by 512 pixels using the proposed method. Its normalized mean square error is 0.000564363 if 500-order moments are used to reconstruct the image. When computing high-order pseudo Zernike moments, the proposed filter method surpasses other compared methods in both speed and accuracy.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68T10 Pattern recognition, speech recognition
68U10 Computing methodologies for image processing
Full Text: DOI

References:

[1] Belkasim, S. O.; Shridhar, M.; Ahmadi, M., Pattern recognition with moment invariants: a comparative study and new results, Pattern Recognit., 24, 1117-1138 (1991)
[2] Zernike, F., Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode, Physica, 1, 689-704 (1934) · Zbl 0009.28101
[3] Teh, C. H.; Chin, R. T., On image analysis by the methods of moments, IEEE Trans. Pattern Anal. Mach. Intell., 10, 496-513 (1988) · Zbl 0709.94543
[4] Kim, W.-Y.; Kim, Y.-S., A region-based shape descriptor using Zernike moments, Signal Process. Image Commun., 16, 95-102 (2000)
[5] Novotni, M.; Klein, R., Shape retrieval using 3D Zernike descriptors, Comput. Aided Des., 36, 1047-1062 (2004)
[6] Zheng, L.; Zhao, S.; Liu, Q.; Zhu, H., A complete set of Pseudo-Zernike moment invariants by image shape description, Artif. Intell. Comput. Intell., 7530, 775-783 (2012)
[7] Mehtre, B. M.; Kankanhalli, M. S.; Lee, W. F., Shape measures for content based image retrieval: a comparison, Inf. Process. Manag., 33, 319-337 (1997)
[8] Zhang, D.; Lu, G., Shape-based image retrieval using generic Fourier descriptor, Signal Process. Image Commun., 17, 825-848 (2002)
[9] Haddadnia, J.; Ahmadi, M.; Faez, K., An efficient feature extraction method with Pseudo-Zernike moment in RBF neural network-based human face recognition system, EURASIP J. Adv. Signal Process., 2003, 1-12 (2003)
[10] Haddadnia, J.; Ahmadi, M.; Raahemifar, K., An effective feature extraction method for face recognition, (Proceedings of the 2003 International Conference on Image Processing (2003)), 9917-9920
[11] Haddadnia, J.; Ahmadi, M.; Faez, K., An efficient method for recognition of human faces using higher orders pseudo Zernike moment invariant, (Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition (2002), IEEE), 330-335
[12] Xin, Y.; Liao, S.; Pawlak, M., Geometrically robust image watermarking via pseudo-Zernike moments., Electr. Comput. Eng., 2, 939-942 (2004)
[13] Wang, X.-Y.; Ma, T.-X.; Niu, P.-P., A pseudo-Zernike moment based audio watermarking scheme robust against desynchronization attacks, Comput. Electr. Eng., 37, 425-443 (2011) · Zbl 1322.94095
[14] Pang, Y.-H.; Jin, A. T.B.; Ling, D. N.C., Palmprint authentication system using wavelet based pseudo Zernike moments features, Int. J. Comput. Internet Manag., 13, 13-26 (2005)
[15] Ye, B.; Peng, J.-X., Improvement and invariance analysis of Pseudo-Zernike moments, J. Image Graph., 3 (2003)
[16] Lakshmi Deepika, C.; Kandaswamy, A.; Vimal, C.; Satish, B., Palmprint authentication using modified Legendre moments, Proced. Comput. Sci., 2, 164-172 (2010)
[17] Nigam, A.; Gupta, P., Designing an accurate hand biometric based authentication system fusing finger knuckleprint and palmprint, Neurocomputing, 151, 1120-1132 (2015)
[18] Wee, C.-Y.; Paramesran, R., On the computational aspects of Zernike moments, Image Vis. Comput., 25, 967-980 (2007)
[19] Papakostas, G. A.; Boutalis, Y. S.; Karras, D. A.; Mertzios, B. G., A new class of Zernike moments for computer vision applications, Inf. Sci., 177, 2802-2819 (2007) · Zbl 1116.68103
[20] Singh, C.; Walia, E.; Pooja, R., Upneja, Analysis of algorithms for fast computation of pseudo Zernike moments and their numerical stability, Digit. Signal Process., 22, 1031-1043 (2012)
[21] Chong, C.-W.; Raveendran, P.; Mukundan, R., An efficient algorithm for fast computation of pseudo-Zernike moments, Int. J. Pattern Recognit. Artif. Intell., 17, 1011-1023 (2003)
[22] Kintner, E. C., On the mathematical properties of the Zernike polynomials, Optica Acta Int. J. Opt., 8, 679-680 (1976)
[23] Chong, C. W.; Raveendran, P.; Mukundan, R., A comparative analysis of algorithms for fast computation of Zernike moments, Pattern Recognit., 36, 731-742 (2003) · Zbl 1028.68142
[24] Singh, C.; Walia, E., Fast and numerically stable methods for the computation of Zernike moments, Pattern Recognit., 43, 2497-2506 (2010) · Zbl 1209.68602
[25] Singh, C.; Upneja, R., Fast and accurate method for high order Zernike moments computation, Appl. Math. Comput., 218, 7759-7773 (2012) · Zbl 1242.65049
[26] Al-Rawi, M. S., Fast computation of pseudo Zernike moments, J. Real-Time Image Process., 5, 3-10 (2010)
[27] Janssen, A. J.E. M.; Dirksen, P., Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform, J. Eur. Opt. Soc. Rapid Publ., 2, 1-3 (2007)
[28] Abramowitz, M.; Stegun, I. A., Orthogonal polynomials, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, 771-802 (1972), Dover: Dover New York · Zbl 0543.33001
[29] Shakibaei, B. H.; Paramesran, R., Recursive formula to compute Zernike radial polynomials, Optics Lett., 38, 2487-2489 (2013)
[30] Deng, A.-W.; Wei, C.-H.; Gwo, C.-Y., Stable and fast computation of high-order Zernike moments using a recursive method, Pattern Recognit., 56, 16-25 (2016) · Zbl 1412.68289
[31] Apostol, T. M., Modular Functions and Dirichlet Series in Number Theory (1997), Springer: Springer New York
[32] Papakostas, G. A.; Boutalis, Y. S.; Papaodysseus, C. N.; Fragoulis, D. K., Numerical error analysis in Zernike moments computation, Image Vis. Comput., 24, 960-969 (2006)
[33] Singh, C.; Walia, E., Fast and numerically stable methods for the computation of Zernike moments, Pattern Recognit., 44, 996-997 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.