×

A hybrid parabolic and hyperbolic equation model for a population with separate dispersal and stationary stages: well-posedness and population persistence. (English) Zbl 1427.92074

Summary: In this paper, we develop a hybrid parabolic and hyperbolic equation model, in which a reaction-diffusion equation governs the random movement and settlement of dispersal individuals, while a first-order hyperbolic equation describes the growth of stationary individuals with age structure. We prove the existence and uniqueness of the solution of the model using the monotone method based on a comparison principle. We study the population persistence criteria in terms of four related measures. We numerically investigate how the interplay between population dispersal, reproduction, settlement, and habitat boundary affects the population persistence.

MSC:

92D25 Population dynamics (general)
35K57 Reaction-diffusion equations
35L50 Initial-boundary value problems for first-order hyperbolic systems
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] A. S. Ackleh and K. Deng, A nonautonomous juvenile-adult model: Well-Posedness and long-time behavior via a comparison principle, SIAM J. Appl. Math., 69 (2009), pp. 1644-1661. · Zbl 1181.92076
[2] R. Bellman, Methods of Nonlinear Analysis, Vol. II, Academic Press, New York, 1973. · Zbl 0265.34002
[3] R. S. Cantrell and C. Consner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, New York, 2003. · Zbl 1059.92051
[4] H. Chatelin, The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operator, SIAM Rev., 23 (1981), pp. 495-522. · Zbl 0472.65048
[5] J. Fang, K. Lan, G. Seo, and J. Wu, Spatial dynamics of an age-sturctured population model of Asian clams, SIAM J. Appl. Math., 74 (2014), pp. 959-979. · Zbl 1360.92089
[6] R. Guenther and J. Lee, Partial Differential Equations of Mathematical Physics and Integral Equations, Dover, New York, 1996.
[7] J. K. Hale, Theory of Functional Differential Equations, Springer, New York, 1977. · Zbl 0352.34001
[8] Q. Huang, Y. Jin, and M. A. Lewis, \(R_0\) analysis of a benthic-drift model for a stream population, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 287-321. · Zbl 1364.92059
[9] Q. Huang, H. Wang, and M. A. Lewis, A hybrid continuous/discrete-time model for invasion dynamics of zebra mussels in rivers, SIAM J. Appl. Math., 77 (2017), pp. 854-880. · Zbl 1383.92068
[10] M. Kot, Elements of Mathematical Ecology, Cambrige University Press, Cambridge, 2001. · Zbl 1060.92058
[11] M. Krkosĕk and M. A. Lewis, An \(R_0\) theory for source-sink dynamics with application to Dreissena competition, Theoret. Ecol., 3 (2010), pp. 25-43.
[12] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1985. · Zbl 0658.35003
[13] M. A. Lewis and B. Li, Spreading speed, traveling waves and the minimal domain size in impulsive reaction-diffusion models, Bull. Math. Biol., 74 (2012), pp. 2383-2402. · Zbl 1312.92035
[14] M. A. Lewis and G. Schmitz, Biological invasion of an organism with separate mobile and stationary states: Modelling and analysis, Forma, 11 (1996), pp. 1-44. · Zbl 1003.92517
[15] F. Lutscher, M. A. Lewis, and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), pp. 2129-2160. · Zbl 1296.92211
[16] F. Lutscher, E. Pachepsky, and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM J. Appl. Math., 65 (2005), pp. 1305-1327. · Zbl 1068.92002
[17] P. Magal, G. F. Webb, and Y. Wu, On the basic reproduction number of reaction-diffusion epidemic models, SIAM J. Appl. Math., 79 (2019), pp. 284-304. · Zbl 1407.35113
[18] H. W. McKenzie, Y. Jin, J. Jacobsen, and M. A. Lewis, \(R_0\) analysis of a spationtemporal model for a stream population, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 567-596. · Zbl 1252.35068
[19] J. D. Murray, Mathematical Biology I: An Introduction, Springer, New York, 2002. · Zbl 1006.92001
[20] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer, New York, 2002. · Zbl 1006.92001
[21] M. Neubert, M. Kot, and M. A. Lewis, Dispersal and pattern formation in a discrete-time predator-prey model, Theor. Popul. Biol., 48 (1995), pp. 7-43. · Zbl 0863.92016
[22] A. Okubo and S. Levin, Diffusion and Ecological Problems, Springer, New York, 2001. · Zbl 1027.92022
[23] E. Pachepsky, F. Lutscher, R. M. Nisbet, and M. A. Lewis, Persistence, spread and the drift paradox, Theor. Popul. Biol., 67 (2005), pp. 61-73. · Zbl 1071.92043
[24] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. · Zbl 0777.35001
[25] G. Seo and F. Lutscher, Spread rates under temporal variability: Calculation and application to biological invasions, Math. Models Methods Appl. Sci., 21 (2011), pp. 2469-2489. · Zbl 1241.92077
[26] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr. 41, American Mathematical Society, Providence, RI, 1995. · Zbl 0821.34003
[27] I. Stakgold, Green’s Functions and Boundary Value Problems, 2nd ed., Wiley, New York, 1998. · Zbl 0897.35001
[28] D. Tilman and P. Kareiva, Spatial Ecology, Princeton University Press, Princeton, NJ, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.