×

Memory-usage advantageous block recursive matrix inverse. (English) Zbl 1427.65034

Summary: The inversion of extremely high order matrices has been a challenging task because of the limited processing and memory capacity of conventional computers. In a scenario in which the data does not fit in memory, it is worth to consider exchanging less memory usage for more processing time in order to enable the computation of the inverse which otherwise would be prohibitive. We propose a new algorithm to compute the inverse of block partitioned matrices with a reduced memory footprint. The algorithm works recursively to invert one block of a \(k\times k\) block matrix \(M\), with \(k\geq 2\), based on the successive splitting of \(M\). It computes one block of the inverse at a time, in order to limit memory usage during the entire processing. Experimental results show that, despite increasing computational complexity, matrices that otherwise would exceed the memory-usage limit can be inverted using this technique.

MSC:

65F05 Direct numerical methods for linear systems and matrix inversion
15A09 Theory of matrix inversion and generalized inverses

References:

[1] McCullagh, P.; Nelder, J. A., Generalized Linear Models (1989), Chapmann & Hal Londonl · Zbl 0744.62098
[2] Byers, R., Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra Appl., 85, 267-279 (1987) · Zbl 0611.65027
[3] An, S.; Liu, W.; Venkatesh, S., Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression, Pattern Recogn., 40, 8, 2154-2162 (2007) · Zbl 1115.68125
[4] Elman, H.; Howle, V. E.; Shadid, J.; Shuttleworth, R.; Tuminaro, R., A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, J. Comput. Phys., 227, 3, 1790-1808 (2008) · Zbl 1290.76023
[5] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0788.73002
[6] Betts, J. T., Practical methods for optimal control using nonlinear programming, vol. 1 (2001), SIAM · Zbl 0995.49017
[7] Björck, A., Numerical methods for least squares problems, vol. 1 (1996), SIAM · Zbl 0847.65023
[8] Strassen, V., Gaussian elimination is not optimal, Numer. Math., 13, 4, 354-356 (1969) · Zbl 0185.40101
[9] Golub, G. H.; Van Loan, C. F., Matrix Computations, 4 (2013), Johns Hopkins University Press · Zbl 1268.65037
[10] Lu, T.-T.; Shiou, S.-H., Inverses of 2 × 2 block matrices, Comput. Math. Appl., 43, 1, 119-129 (2002) · Zbl 1001.15002
[11] Baker, J.; Hiergeist, F.; Trapp, G., A recursive algorithm to invert multiblock circulant matrices, Kyungpook Math. J, 28, 45-50 (1988) · Zbl 0671.65019
[12] Vescovo, R., Inversion of block-circulant matrices and circular array approach, IEEE Trans. Antennas Propag., 45, 10, 1565-1567 (1997) · Zbl 0949.15006
[13] Karimi, S.; Zali, B., The block preconditioned LSQR and GL-LSQR algorithms for the block partitioned matrices, Appl. Math. Comput., 227, 811-820 (2014) · Zbl 1364.65073
[14] Madsen, N. K., Cyclic odd-even reduction for symmetric circulant matrices, Linear Algebra Appl., 51, 17-35 (1983) · Zbl 0525.65015
[15] Tsitsas, N. L.; Alivizatos, E. G.; Kalogeropoulos, G. H., A recursive algorithm for the inversion of matrices with circulant blocks, Appl. Math. Comput., 188, 1, 877-894 (2007) · Zbl 1125.65026
[16] Tsitsas, N. L., On block matrices associated with discrete trigonometric transforms and their use in the theory of wave propagation, J. Comput. Math., 28, 6, 864-878 (2010) · Zbl 1240.65398
[17] Zhang, F., The Schur Complement and its Applications, 4 (2005), Springer Science & Business Media · Zbl 1075.15002
[18] Brezinski, C., Other manifestations of the Schur complement, Linear Algebra Appl., 111, 231-247 (1988) · Zbl 0662.65037
[19] Noble, B.; Daniel, J. W., Applied Linear Algebra, 3 (1988), Prentice-Hall: Prentice-Hall New Jersey
[20] Sanderson, C.; Curtin, R., Armadillo: a template-based C++ library for linear algebra, J. Open Source Softw., 1, 2, 26-32 (2016)
[21] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK Users’ guide, 9 (1999), SIAM · Zbl 0934.65030
[22] Nethercote, N.; Seward, J., Valgrind: a framework for heavyweight dynamic binary instrumentation, ACM Sigplan notices, 42, 89-100 (2007), ACM
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.