×

Limit-point criteria for \(q\)-Sturm-Liouville equations. (English) Zbl 1427.39003

Summary: In this article, the deficiency index problem of a singular \(q\)-Sturm-Liouville problem is studied. We establish some criteria under which the \(q\)-Sturm-Liouville equation is of limit-point case at infinity.

MSC:

39A13 Difference equations, scaling (\(q\)-differences)
33D05 \(q\)-gamma functions, \(q\)-beta functions and integrals
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
47A99 General theory of linear operators
47B25 Linear symmetric and selfadjoint operators (unbounded)
34B20 Weyl theory and its generalizations for ordinary differential equations
Full Text: DOI

References:

[1] Aldwoah, K. A.; Malinowska, A. B.; Torres, D. F.M., The power quantum calculus and variational problems, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 19, 93-116 (2012) · Zbl 1267.39005
[2] Allahverdiev, B. P., Spectral problems of non-self-adjoint q-Sturm-Liouville operators in limit-point case, Kodai Math. J., 39, 1, 1-15 (2016) · Zbl 1350.39003
[3] Annaby, M. H.; Hamza, A. E.; Aldwoah, K. A., Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl., 154, 133-153 (2012) · Zbl 1266.47054
[4] Annaby, M. H.; Mansour, Z. S., q-fractional calculus and equations, Lecture Notes in Math., 2056 (2012), Springer: Springer, Heidelberg · Zbl 1267.26001
[5] Annaby, M. H.; Mansour, Z. S.; Soliman, I. A., q-Titchmarsh-Weyl theory: series expansion, Nagoya Math. J., 205, 67-118 (2012) · Zbl 1266.34037
[6] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1955), McGraw-Hill: McGraw-Hill, New York · Zbl 0064.33002
[7] Dunford, N.; Schwartz, J. T., Linear Operators, Part II: Spectral Theory (1963), Interscience: Interscience, New York · Zbl 0128.34803
[8] Ernst, T., The History of q-Calculus and a New Method, U.U.D.M. Report (2000): 16, ISSN1101-3591, Department of Mathematics, Uppsala University, 2000.
[9] Everitt, W. N., On the limit point classification of second order differential expressions, J. London Math. Soc., 41, 531-534 (1966) · Zbl 0145.10604
[10] Everitt, W. N., On the limit-circle classification of second-order differential expressions, Quart. J. Math. Oxford Ser. (2), 23, 193-196 (1972) · Zbl 0256.34028
[11] Hahn, W., Beiträage zur Theorie der Heineschen Reihen, Math. Nachr., 2, 340-379 (1949) · Zbl 0033.05703
[12] Hamza, A. E.; Ahmed, S. M., Existence and uniqueness of solutions of Hahn difference equations, Adv. Differ. Equ., 316, 1-15 (2013) · Zbl 1391.39015
[13] Hamza, A. E.; Ahmed, S. M., Theory of linear Hahn difference equations, J. Adv. Math., 4, 2, 441-461 (2013)
[14] Jackson, F. H., On q-definite integrals, Quart. J. Pure Appl. Math., 41, 193-203 (1910) · JFM 41.0317.04
[15] Kac, V.; Cheung, P., Quantum Calculus (2002), Universitext, Springer-Verlag: Universitext, Springer-Verlag, New York · Zbl 0986.05001
[16] Kaufman, R.M., Read, T.T. and Zettl, A., The Deficiency Index Problem for Powers of Ordinary Differential Expressions, Lecture Notes in Mathematics, Vol. 621, Springer-Verlag, New York, 1977. · Zbl 0367.34014
[17] Levinson, N., Criteria for the limit point case for second order linear differential equations, Casopis Pest. Mat. Fys., 74, 17-20 (1949) · Zbl 0033.18102
[18] Malinowska, A. B.; Torres, D. F.M., The Hahn quantum variational calculus, J. Optim. Theory Appl., 147, 419-442 (2010) · Zbl 1218.49026
[19] Naimark, M. A., Linear Differential Operators (1969), Nauka: Nauka, Moscow · Zbl 0193.04101
[20] Sears, D. B., Note on the uniqueness of the Green’s function associated with certain second order differential equations, Canadian J. Math., 4, 314-325 (1950) · Zbl 0054.04207
[21] Swamy, P. N., Deformed Heisenberg algebra: origin of q-calculus, Physica A: Statist. Mechan. Appl., 328, 1-2, 145-153 (2003) · Zbl 1031.81034
[22] Tariboon, J.; Ntouyas, S. K., Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 282, 1-19 (2013) · Zbl 1391.39017
[23] Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I (1962), Clarendon Press: Clarendon Press, Oxford · Zbl 0099.05201
[24] Weyl, H., Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann., 68, 2, 220-269 (1910) · JFM 41.0343.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.