×

Hyperbolicity of singular spaces. (English. French summary) Zbl 1427.32017

Summary: We study the hyperbolicity of singular quotients of bounded symmetric domains. We give effective criteria for such quotients to satisfy Green-Griffiths-Lang’s conjectures in both analytic and algebraic settings. As an application, we show that Hilbert modular varieties, except for a few possible exceptions, satisfy all expected conjectures.

MSC:

32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces

References:

[1] A. Ash, D. Mumford, M. Rapoport & Y. Tai, Smooth compactification of locally symmetric varieties, Lie Groups: History, Frontiers and Applications IV, Math. Sci. Press, Brookline, MA, 1975 · Zbl 0334.14007
[2] Y. Brunebarbe & B. Cadorel, “Hyperbolicity of varieties supporting a variation of Hodge structure”, Internat. Math. Res. Notices (2018), article no. rny054 · Zbl 1439.32036
[3] S. Boucksom & S. Diverio, “A note on Lang’s conjecture for quotients of bounded domains”, , 2018 · Zbl 1464.32036
[4] A. Borel, Introduction aux groupes arithmétiques, Actualités scientifiques et industrielles, Hermann, Paris, 1969 · Zbl 0186.33202
[5] Y. Brunebarbe, “A strong hyperbolicity property of locally symmetric varieties”, , 2016
[6] B. Cadorel, “Symmetric differentials on complex hyperbolic manifolds with cusps”, , 2016
[7] F. Campana, “Orbifolds, special varieties and classification theory”, Ann. Inst. Fourier (Grenoble)54 (2004) no. 3, p. 499-630 · Zbl 1062.14014
[8] B. Claudon, S. Kebekus & B. Taji, “Generic positivity and applications to hyperbolicity of moduli spaces”, , 2016
[9] F. Campana & M. Păun, “Orbifold generic semi-positivity: an application to families of canonically polarized manifolds”, Ann. Inst. Fourier (Grenoble)65 (2015) no. 2, p. 835-861 · Zbl 1338.14012
[10] J.-P. Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, American Mathematical Society, 1997, p. 285-360 · Zbl 0919.32014
[11] M. Green & P. Griffiths, Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, 1980, p. 41-74 · Zbl 0508.32010
[12] D. Greb, S. Kebekus & S. J. Kovács, “Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties”, Compositio Math.146 (2010), p. 193-219, Extended version: · Zbl 1194.14056
[13] H. Guenancia & M. Păun, “Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors”, J. Differential Geom.103 (2016) no. 1, p. 15-57 · Zbl 1344.53053
[14] J. Grivaux, J. Restrepo Velasquez & E. Rousseau, “On Lang’s conjecture for some product-quotient surfaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)18 (2018) no. 4, p. 1483-1501 · Zbl 1407.14034
[15] H. Guenancia & B. Taji, “Orbifold stability and Miyaoka-Yau inequality for minimal pairs”, , 2016 · Zbl 1505.14035
[16] H. Guenancia, “Quasi-projective manifolds with negative holomorphic sectional curvature”, , 2018
[17] K. Jabbusch & S. Kebekus, “Families over special base manifolds and a conjecture of Campana”, Math. Z.269 (2011) no. 3-4, p. 847-878 · Zbl 1238.14024
[18] J. Keum, “Quotients of fake projective planes”, Geom. Topol.12 (2008) no. 4, p. 2497-2515 · Zbl 1222.14088
[19] J. Kollár & S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, Cambridge University Press, 2008 · Zbl 1143.14014
[20] J. Kollár, Lectures on resolution of singularities, Annals of Math. Studies 166, Princeton University Press, Princeton, NJ, 2007 · Zbl 1113.14013
[21] S. Lang, “Hyperbolic and Diophantine analysis”, Bull. Amer. Math. Soc. (N.S.)14 (1986) no. 2, p. 159-205 · Zbl 0602.14019
[22] R. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergeb. Math. Grenzgeb. (3) 48, Springer-Verlag, Berlin, 2004 · Zbl 1093.14501
[23] D. Mumford, “Hirzebruch’s proportionality theorem in the noncompact case”, Invent. Math.42 (1977), p. 239-272 · Zbl 0365.14012
[24] A. M. Nadel, “The nonexistence of certain level structures on abelian varieties over complex function fields”, Ann. of Math. (2)129 (1989) no. 1, p. 161-178 · Zbl 0675.14018
[25] A. Prestel, “Die elliptischen Fixpunkte der Hilbertschen Modulgruppen”, Math. Ann.177 (1968), p. 181-209 · Zbl 0159.11302
[26] E. Rousseau, “Hyperbolicity, automorphic forms and Siegel modular varieties”, Ann. Sci. École Norm. Sup. (4)49 (2016) no. 1, p. 249-255 · Zbl 1361.32032
[27] E. Rousseau & F. Touzet, “Curves in Hilbert modular varieties”, Asian J. Math.22 (2018) no. 4, p. 673-690 · Zbl 1402.32026
[28] B. Taji, “The isotriviality of smooth families of canonically polarized manifolds over a special quasi-projective base”, Compositio Math.152 (2016) no. 7, p. 1421-1434 · Zbl 1427.14031
[29] S. Tsuyumine, “On the Kodaira dimensions of Hilbert modular varieties”, Invent. Math.80 (1985) no. 2, p. 269-281 · Zbl 0576.14036
[30] S. Tsuyumine, “Multitensors of differential forms on the Hilbert modular variety and on its subvarieties”, Math. Ann.274 (1986) no. 4, p. 659-670     ##img## Creative Commons License BY-ND     ISSN : 2429-7100 - e-ISSN : 2270-518X · Zbl 0576.10022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.