×

A local rigidity theorem for finite actions on Lie groups and application to compact extensions of \(\mathbb{R}^n\). (English) Zbl 1427.22009

Summary: Let \(G\) be a Lie group, and let \(\Gamma\) be a finite group. We show in this article that the space \(\operatorname{Hom}(\Gamma,G)/G\) is discrete and – in addition – finite if \(G\) has finitely many connected components. This means that in the case in which \(\Gamma\) is a discontinuous group for the homogeneous space \(G/H\), where \(H\) is a closed subgroup of \(G\), all the elements of Kobayashi’s parameter space are locally rigid. Equivalently, any Clifford-Klein form of finite fundamental group does not admit nontrivial continuous deformations. As an application, we provide a criterion of local rigidity in the context of compact extensions of \(\mathbb{R}^n\).

MSC:

22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
22E40 Discrete subgroups of Lie groups
57S30 Discontinuous groups of transformations

References:

[1] A. Baklouti, On discontinuous subgroups acting on solvable homogeneous spaces, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 9, 173-177. · Zbl 1241.22009 · doi:10.3792/pjaa.87.173
[2] A. Baklouti and S. Bejar, On the Calabi-Markus phenomenon and a rigidity theorem for Euclidean motion groups, Kyoto J. Math. 56 (2016), no. 2, 325-346. · Zbl 1404.22019 · doi:10.1215/21562261-3478898
[3] A. Baklouti and I. Kédim, On non-abelian discontinuous subgroups acting on exponential solvable homogeneous spaces, Int. Math. Res. Not. IMRN 2010, no. 7, 1315-1345. · Zbl 1197.22003 · doi:10.1093/imrn/rnp193
[4] L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70 (1911), no. 3, 297-336. · JFM 42.0144.02
[5] L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich, Math. Ann. 72 (1912), no. 3, 400-412. · JFM 43.0186.01 · doi:10.1007/BF01456724
[6] E. Calabi, On compact, Riemannian manifolds with constant curvature, I, Proc. Sympos. Pure Math. 3, Amer. Math. Soc., Providence, 1961, 155-180. · Zbl 0129.14102
[7] W. M. Goldman and J. J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987), no. 3, 495-520. · Zbl 0627.22012 · doi:10.1007/BF01391829
[8] J. Hilgert and K.-H. Neeb, Structure and Geometry of Lie Groups, Springer Monogr. Math., Springer, New York, 2012. · Zbl 1229.22008
[9] G. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco, 1965. · Zbl 0131.02702
[10] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann. 285 (1989), no. 2, 249-263. · Zbl 0662.22008 · doi:10.1007/BF01443517
[11] T. Kobayashi, “Discontinuous groups acting on homogeneous spaces of reductive type” in Representation Theory of Lie Groups and Lie Algebras (Fuji-Kawaguchiko, 1990), World Scientific, River Edge, NJ, 1992, 59-75. · Zbl 1193.22010
[12] T. Kobayashi, On discontinuous groups on homogeneous space with noncompact isotropy subgroups, J. Geom. Phys. 12 (1993), no. 2, 133-144. · Zbl 0815.57029 · doi:10.1016/0393-0440(93)90011-3
[13] T. Kobayashi, Criterion for proper actions on homogeneous spaces of reductive groups, J. Lie Theory 6 (1996), no. 2, 147-163. · Zbl 0863.22010
[14] T. Kobayashi, “Discontinuous groups and Clifford-Klein forms of pseudo-Riemannian homogeneous manifolds” in Algebraic and Analytic Methods in Representation Theory (Sonderborg, 1994), Perspect. Math. 17, Academic Press, San Diego, 1996, 99-165. · Zbl 0899.43005
[15] T. Kobayashi, Deformation of compact Clifford-Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann. 310 (1998), no. 3, 394-409. · Zbl 0891.22014 · doi:10.1007/s002080050153
[16] T. Kobayashi, “Discontinuous groups for non-Riemannian homogeneous space” in Mathematics Unlimited—2001 and Beyond, Springer, Berlin, 2001, 723-747. · Zbl 1023.53031
[17] T. Kobayashi and S. Nasrin, Deformation of properly discontinuous actions of \({\mathbb{Z}}^k\) on \({\mathbb{R}}^{k+1} \), Internat. J. Math. 17 (2006), no. 10, 1175-1193. · Zbl 1124.57015 · doi:10.1142/S0129167X06003862
[18] T. Kobayashi and T. Yoshino, Compact Clifford-Klein forms of symmetric spaces—revisited, Pure Appl. Math. Q. 1 (2005), no. 3, 591-663. · Zbl 1145.22011 · doi:10.4310/PAMQ.2005.v1.n3.a6
[19] G. D. Mostow, On a conjecture of Montgomery, Ann. of Math. (2) 65 (1957), 513-516. · Zbl 0078.16302 · doi:10.2307/1970061
[20] R. K. Oliver, On Bieberbach’s analysis of discrete Euclidean groups, Proc. Amer. Math. Soc. 80 (1980), no. 1, 15-21. · Zbl 0434.20029
[21] A. Selberg, “On discontinuous groups in higher-dimensional symmetric spaces” in Contributions to Function Theory (Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960, 147-164. · Zbl 0201.36603
[22] A. Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157. · Zbl 0192.12802 · doi:10.2307/1970495
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.