×

Classification of \((1,2)\)-reflective anisotropic hyperbolic lattices of rank 4. (English. Russian original) Zbl 1427.11064

Izv. Math. 83, No. 1, 1-19 (2019); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 83, No. 1, 3-24 (2019).
A lattice \( L \) is called hyperbolic if the associated quadratic form has signature \( (n,1) \). Moreover, the number \( n+1 \) is called the rank of the lattice \( L \). Recall that a vector \( e\in L \) is called a root, if \( k=q(e,e) \) is a positive integer, \( 2q(e,x)\in k\mathbb{Z} \) for all \( x\in L \) (here \( q(\cdot , \cdot) \) denotes the bilinear form induced by the quadratic form) and \( e/m \not\in L \) for all integers \( m>1 \). Each root \( e\in L \) defines an orthogonal reflection \( x\mapsto x-\frac{2q(x,e)}{q(e,e)}e \) in the space \( L\otimes \mathbb{R} \).
Let \( O'(L\otimes \mathbb{R}) \) be the group of motions of the corresponding Lobachevsky space and let \( O(L) \) be the group of automorphisms of the lattice \( L \). Denote by \( O^{(1,2)}(L) \) the subgroup of \( O'(L) =O'(L\otimes \mathbb{R}) \cap O(L) \) generated by all reflections induced by roots \( e\in L \) such that \( q(e,e)\in \{1,2\} \). The lattice \( L \) is called \( (1,2) \)-reflective if \( O^{(1,2)}(L) \) has finite index in \( O'(L) \).
In this paper all \( (1,2) \)-reflective anisotropic hyperbolic lattices of rank \( 4 \) are classified. To obtain the classification, the author modifies the method developed by V. V. Nikulin [On the classification of hyperbolic root systems of rank three. Transl. from the Russian. Moscow: Maik Nauka/Interperiodica (2000; Zbl 1115.17302); Prob. Steklov Inst. Math. 165, 131–155 (1985; Zbl 0577.10019); translation from Tr. Mat. Inst. Steklova 165, 119–142 (1984)] by applying the existing and new results about the geometry of the fundamental polyhedron.

MSC:

11H55 Quadratic forms (reduction theory, extreme forms, etc.)
11E12 Quadratic forms over global rings and fields
51F15 Reflection groups, reflection geometries
20F55 Reflection and Coxeter groups (group-theoretic aspects)

References:

[1] B. A. Venkov 1937 On the arithmetic group of automorphisms of an indefinite quadratic form Izv. Akad. Nauk SSSR Ser. Mat.1 2 139-170
[2] H. S. M. Coxeter 1934 Discrete groups generated by reflections Ann. of Math. (2)35 3 588-621 · JFM 60.0898.02 · doi:10.2307/1968753
[3] È. B. Vinberg 1967 Discrete groups generated by reflections in Lobačevskiĭ spaces Mat. Sb.72(114) 3 471-488 · Zbl 0166.16303
[4] English transl. È. B. Vinberg 1967 Math. USSR-Sb.1 3 429-444 · doi:10.1070/SM1967v001n03ABEH001992
[5] È. B. Vinberg 1972 On groups of unit elements of certain quadratic forms Mat. Sb.87(129) 1 18-36 · Zbl 0252.20054
[6] English transl. È. B. Vinberg 1972 Math. USSR-Sb.16 1 17-35 · Zbl 0252.20054 · doi:10.1070/SM1972v016n01ABEH001346
[7] È. B. Vinberg 1975 Some arithmetical discrete groups in Lobačevskiĭ spaces Discrete subgroups of Lie groups and applications to moduli, Internat. Colloq.Bombay 1973 Oxford Univ. Press, Bombay 323-348 · Zbl 0316.10013
[8] È. B. Vinberg 1984 The non-existence of crystallographic groups of reflections in Lobachevskij spaces of large dimension Trudy Moskov. Mat. Obshch. 47 Moscow Univ. Press, Moscow 68-102 · Zbl 0593.22007
[9] English transl. È. B. Vinberg Trans. Moscow Math. Soc.1985 75-112 · Zbl 0593.22007
[10] F. Esselmann 1996 Über die maximale Dimension von Lorentz-Gittern mit coendlicher Spiegelungsgruppe J. Number Theory61 1 103-144 · Zbl 0871.11046 · doi:10.1006/jnth.1996.0141
[11] V. V. Nikulin 2007 Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces Izv. Ross. Akad. Nauk Ser. Mat.71 1 55-60 · Zbl 1131.22009 · doi:10.4213/im1148
[12] English transl. V. V. Nikulin 2007 Izv. Math.71 1 53-56 · Zbl 1131.22009 · doi:10.1070/IM2007v071n01ABEH002349
[13] I. Agol, M. Belolipetsky, P. Storm, and K. Whyte 2008 Finiteness of arithmetic hyperbolic reflection groups Groups Geom. Dyn.2 4 481-498 · Zbl 1194.22011 · doi:10.4171/GGD/47
[14] V. V. Nikulin 1979 On factor groups of the automorphism groups of hyperbolic forms modulo subgroups generated by 2-reflections Dokl. Akad. Nauk SSSR248 6 1307-1309 · Zbl 0445.10020
[15] English transl. V. V. Nikulin 1979 Soviet Math. Dokl.20 1156-1158 · Zbl 0445.10020
[16] V. V. Nikulin 1981 Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebro-geometric applications Itogi Nauki Tekhn. Ser. Sovrem. Probl. Mat. Nov. Dostizh. 18 VINITI, Moscow 3-114 · Zbl 0484.10021
[17] English transl. V. V. Nikulin 1983 J. Soviet Math.22 4 1401-1475 · Zbl 0508.10020 · doi:10.1007/BF01094757
[18] V. V. Nikulin 1984 Surfaces of type K3 with finite group of automorphisms and Picard group of rank three Trudy Mat. Inst. Steklova 165 119-142 · Zbl 0577.10019
[19] English transl. V. V. Nikulin 1985 Proc. Steklov Inst. Math.165 131-155 · Zbl 0577.10019
[20] V. V. Nikulin 2000 On the classification of hyperbolic root systems of rank three Trudy Mat. Inst. Steklova 230 Nauka, MAIK “Nauka/Interpreiodika”, Moscow 3-255 · Zbl 0997.17014
[21] English transl. V. V. Nikulin 2000 Proc. Steklov Inst. Math.230 3 1-241
[22] E. Vinberg 1998 Classification of \(2\)-reflective hyperbolic lattices of rank \(4\), Preprint 98-113 Univ. Bielefeld http://sfb343.math.uni-bielefeld.de/sfb343/preprints/index98.html
[23] E. B. Vinberg 2007 Classification of 2-reflective hyperbolic lattices of rank 4 Tr. Mosk. Mat. Obs. 68 URSS, Moscow 44-76 · Zbl 1207.11073
[24] English transl. E. B. Vinberg Trans. Moscow Math. Soc.2007 39-66 · Zbl 1207.11073 · doi:10.1090/s0077-1554-07-00160-4
[25] D. Allcock 2012 The reflective Lorentzian lattices of rank \(3\) Mem. Amer. Math. Soc. 220 Amer. Math. Soc., Providence, RI 1033 · Zbl 1302.11046 · doi:10.1090/S0065-9266-2012-00648-4
[26] R. Scharlau 1989 On the classification of arithmetic reflection groups on hyperbolic \(3\)-space Bielefeld http://www.mathematik.tu-dortmund.de/ scharlau/research/index.html
[27] R. Scharlau and C. Walhorn 1992 Integral lattices and hyperbolic reflection groups Journées arithmétiquesGeneva 1991 Astérisque 209 Soc. Math. France, Paris 279-291 · Zbl 0815.20039
[28] C. Walhorn 1993 Arithmetische Spiegelungsgruppen auf dem \(4\)-dimensionalen hyperbolischen Raum Ph. D. thesis Univ. Bielefeld, Bielefeld · Zbl 0837.20059
[29] I. Turkalj 2017 Reflective Lorentzian lattices of signature \((5,1)\) Ph. D. thesis Tech. Univ. Dortmund · Zbl 1415.11090 · doi:10.17877/DE290R-18103
[30] N. V. Bogachev 2016 Reflective anisotropic hyperbolic lattices of rank \(4\) 1610.06148v1
[31] N. V. Bogachev 2017 Reflective anisotropic hyperbolic lattices of rank 4 Uspekhi Mat. Nauk72 1(433) 193-194 · Zbl 1387.11036 · doi:10.4213/rm9756
[32] English transl. N. V. Bogachev 2017 Russian Math. Surveys72 1 179-181 · Zbl 1387.11036 · doi:10.1070/RM9756
[33] M. Belolipetsky 2016 Arithmetic hyperbolic reflection groups Bull. Amer. Math. Soc. (N.S.)53 3 437-475 · Zbl 1342.22017 · doi:10.1090/bull/1530
[34] È. B. Vinberg 1985 Hyperbolic reflection groups Uspekhi Mat. Nauk40 1(241) 29-66 · Zbl 0579.51015
[35] English transl. È. B. Vinberg 1985 Russian Math. Surveys40 1 31-75 · Zbl 0579.51015 · doi:10.1070/RM1985v040n01ABEH003527
[36] È. B. Vinberg and O. V. Shvartsman 1988 Discrete groups of motions of spaces of constant curvature Geometriya - 2 Itogi Nauki Tekhn. Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 29 VINITI, Moscow 147-259 · Zbl 0699.22017
[37] English transl. È. B. Vinberg and O. V. Shvartsman 1993 Geometry II Encyclopaedia Math. Sci. 29 Springer, Berlin 139-248 · Zbl 0786.00008 · doi:10.1007/978-3-662-02901-5_2
[38] V. V. Nikulin 1980 On arithmetic groups generated by reflections in Lobachevsky spaces Izv. Akad. Nauk SSSR Ser. Mat.44 3 637-669 · Zbl 0441.22008
[39] English transl. V. V. Nikulin 1981 Math. USSR-Izv.16 3 573-601 · Zbl 0465.22007 · doi:10.1070/IM1981v016n03ABEH001321
[40] V. V. Nikulin 1981 On the classification of arithmetic groups generated by reflections in Lobachevsky spaces Izv. Akad. Nauk SSSR Ser. Mat.45 1 113-142
[41] English transl. V. V. Nikulin 1982 Math. USSR-Izv.18 1 99-123 · Zbl 0477.22008 · doi:10.1070/IM1982v018n01ABEH001385
[42] D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov 1988 Geometry of spaces of constant curvature Geometriya - 2 Itogi Nauki Tekhn. Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 29 VINITI, Moscow 5-146 · Zbl 0699.53001
[43] English transl. D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov 1993 Geometry II Encyclopaedia Math. Sci. 29 Springer, Berlin 1-138 · doi:10.1007/978-3-662-02901-5_1
[44] J. W. S. Cassels 1978 Rational quadratic forms London Math. Soc. Monogr. 13 Academic Press [Harcourt Brace Jovanovich], London-New York · Zbl 0395.10029
[45] Russian transl. J. W. S. Cassels 1982 Rational quadratic forms Mir, Moscow · Zbl 0518.10025
[46] V. O. Bugaenko 1992 Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices Lie groups, their discrete subgroups, and invariant theory Adv. Soviet Math. 8 Amer. Math. Soc., Providence, RI 33-55 · Zbl 0768.20020 · doi:10.1090/advsov/008/02
[47] R. Guglielmetti 2017 Hyperbolic isometries in (in-)finite dimensions and discrete reflection groups: theory and computations Ph. D. thesis Univ. of Fribourg http://homeweb1.unifr.ch/kellerha/pub/DissRGuglielmetti-final.pdf
[48] N. V. Bogachev and A. Perepechko 2017 Vinberg’s algorithm https://github.com/aperep/vinberg-algorithm · doi:10.5281/zenodo.1098448
[49] N. V. Bogachev and A. Yu. Perepechko 2018 Vinberg’s algorithm for hyperbolic lattices Mat. Zametki103 5 769-773 · Zbl 1418.11103 · doi:10.4213/mzm11889
[50] English transl. N. V. Bogachev and A. Yu. Perepechko 2018 Math. Notes103 5 836-840 · Zbl 1418.11103 · doi:10.1134/S0001434618050164
[51] A. Mark 2015 Reflection groups of the quadratic form \(- p x_0^2+x_1^2+…+x_n^2\) with \(p\) prime Publ. Mat.59 2 353-372 · Zbl 1330.20061 · doi:10.5565/PUBLMAT_59215_05
[52] J. A. McLeod 2013 Arithmetic hyperbolic reflection groups Ph. D. thesis Durham Univ. http://etheses.dur.ac.uk/7743
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.