×

A convex optimization model and algorithm for retinex. (English) Zbl 1426.90202

Summary: Retinex is a theory on simulating and explaining how human visual system perceives colors under different illumination conditions. The main contribution of this paper is to put forward a new convex optimization model for Retinex. Different from existing methods, the main idea is to rewrite a multiplicative form such that the illumination variable and the reflection variable are decoupled in spatial domain. The resulting objective function involves three terms including the Tikhonov regularization of the illumination component, the total variation regularization of the reciprocal of the reflection component, and the data-fitting term among the input image, the illumination component, and the reciprocal of the reflection component. We develop an alternating direction method of multipliers (ADMM) to solve the convex optimization model. Numerical experiments demonstrate the advantages of the proposed model which can decompose an image into the illumination and the reflection components.

MSC:

90C25 Convex programming
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

UNLocBoX
Full Text: DOI

References:

[1] Land, E. H.; McCann, J. J., Lightness and retinex theory, Journal of the Optical Society of America, 61, 1, 1-11, (1971) · doi:10.1364/josa.61.000001
[2] McCann, J. J.; Parraman, C. E.; Rizzi, A., Pixel and spatial mechanisms of color constancy, Proceedings of the Color Imaging XV: Displaying, Processing, Hardcopy, and Applications · doi:10.1117/12.838736
[3] Morel, J. M.; Petro, A. B.; Sbert, C., A {PDE} formalization of retinex theory, IEEE Transactions on Image Processing, 19, 11, 2825-2837, (2010) · Zbl 1371.94268 · doi:10.1109/TIP.2010.2049239
[4] Kimmel, R.; Elad, M.; Shaked, D.; Keshet, R.; Sobel, I., A variational framework for retinex, International Journal of Computer Vision, 52, 1, 7-23, (2003) · Zbl 1009.68642 · doi:10.1023/A:1022314423998
[5] Lei, L.; Zhou, Y.; Li, J., An investigation of Retinex algorithms for image enhancement, Journal of Electronics, 24, 5, 696-700, (2007) · doi:10.1007/s11767-006-0222-2
[6] Land, E. H., Color vision and the natural image, Proceedings of the National Academy of Sciences of the United States of America, 45, 1, 115-129, (1959) · doi:10.1073/pnas.45.1.115
[7] Marini, D.; Rizzi, A., Computational approach to color adaptation effects, Image and Vision Computing, 18, 13, 1005-1014, (2000) · doi:10.1016/S0262-8856(00)00037-8
[8] Provenzi, E.; De Carli, L.; Rizzi, A.; Marini, D., Mathematical definition and analysis of the Retinex algorithm, Journal of the Optical Society of America A. Optics, Image Science, and Vision, 22, 12, 2613-2621, (2005) · doi:10.1364/JOSAA.22.002613
[9] Cooper, T. J.; Baqai, F. A., Analysis and extensions of the Frankle-McCann Retinex algorithm, Journal of Electronic Imaging, 13, 1, 85-92, (2004) · doi:10.1117/1.1636182
[10] McCann, J., Lessons learned from Mondrians applied to real images and color gamuts, Proceedings of the Final Program and Proceedings of the Color and Imaging Conference, Society for Imaging Science and Technology
[11] Funt, B.; Ciurea, F.; McCann, J., Retinex in MATLAB™, Journal of Electronic Imaging, 13, 1, 48-57, (2004) · doi:10.1117/1.1636761
[12] Jobson, D. J.; Rahman, Z.-U.; Woodell, G. A., Properties and performance of a center/surround retinex, IEEE Transactions on Image Processing, 6, 3, 451-462, (1997) · doi:10.1109/83.557356
[13] Jobson, D. J.; Rahman, Z.-U.; Woodell, G. A., A multiscale retinex for bridging the gap between color images and the human observation of scenes, IEEE Transactions on Image Processing, 6, 7, 965-976, (1997) · doi:10.1109/83.597272
[14] Blake, A., oundary conditions for lightness computation in Mondrian world, Computer Vision, Graphics, and Image Processing, 32, 3, 314-327, (1985) · doi:10.1016/0734-189X(85)90054-4
[15] Horn, B. K., Determining lightness from an image, Computer Graphics and Image Processing, 3, 4, 277-299, (1974) · doi:10.1016/0146-664X(74)90022-7
[16] Terzopoulos, D., Image Analysis Using Multigrid Relaxation Methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 2, 129-139, (1986) · doi:10.1109/TPAMI.1986.4767767
[17] Palma-Amestoy, R.; Provenzi, E.; Bertalmío, M.; Caselles, V., A perceptually inspired variational framework for color enhancement, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 3, 458-474, (2009) · doi:10.1109/TPAMI.2008.86
[18] Bertalmo, M.; Caselles, V.; Provenzi, E.; Rizzi, A., Perceptual color correction through variational techniques, IEEE Transactions on Image Processing, 16, 4, 1058-1072, (2007) · doi:10.1109/TIP.2007.891777
[19] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D. Nonlinear Phenomena, 60, 1-4, 259-268, (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[20] Mei, J-J.; Dong, Y.; Huang, T-Z.; Yin, W., Cauchy Noise Removal by Nonconvex ADMM with Convergence Guarantees, Journal of Scientific Computing, (2017) · Zbl 06858871 · doi:10.1007/s10915-017-0460-5
[21] Liu, J.; Huang, T.-Z.; Selesnick, I. W.; Lv, X.-G.; Chen, P.-Y., Image restoration using total variation with overlapping group sparsity, Information Sciences, 295, 232-246, (2015) · Zbl 1360.94042 · doi:10.1016/j.ins.2014.10.041
[22] Zhao, X.-L.; Wang, F.; Huang, T.-Z.; Ng, M. K.; Plemmons, R. J., Deblurring and sparse unmixing for hyperspectral images, IEEE Transactions on Geoscience and Remote Sensing, 51, 7, 4045-4058, (2013) · doi:10.1109/tgrs.2012.2227764
[23] Ji, T.-Y.; Huang, T.-Z.; Zhao, X.-L.; Ma, T.-H.; Liu, G., Tensor completion using total variation and low-rank matrix factorization, Information Sciences, 326, 243-257, (2016) · Zbl 1387.94038 · doi:10.1016/j.ins.2015.07.049
[24] Ma, W.; Osher, S., A TV Bregman iterative model of Retinex theory, Inverse Problems and Imaging, 6, 4, 697-708, (2012) · Zbl 1261.68153 · doi:10.3934/ipi.2012.6.697
[25] Ma, W.; Morel, J.-M.; Osher, S.; Chien, A., An L1-based variational model for Retinex theory and its application to medical images, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (CVPR ’11) · doi:10.1109/CVPR.2011.5995422
[26] Zosso, D.; Tran, G.; Osher, S., A unifying retinex model based on non-local differential operators, Proceedings of the Computational Imaging XI · doi:10.1117/12.2008839
[27] Liang, J.; Zhang, X., Retinex by higher order total variation L decomposition, Journal of Mathematical Imaging and Vision, 52, 3, 345-355, (2015) · Zbl 1400.94025 · doi:10.1007/s10851-015-0568-x
[28] Ng, M. K.; Wang, W., A total variation model for retinex, SIAM Journal on Imaging Sciences, 4, 1, 345-365, (2011) · Zbl 1215.65117 · doi:10.1137/100806588
[29] Chambolle, A., An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20, 1-2, 89-97, (2004) · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011321.19549.88
[30] Zhao, X.-L.; Wang, F.; Ng, M. K., A new convex optimization model for multiplicative noise and blur removal, SIAM Journal on Imaging Sciences, 7, 1, 456-475, (2014) · Zbl 1296.65093 · doi:10.1137/13092472X
[31] Bertsekas, D. P.; Nedic, A.; Ozdaglar, A. E., Convex analysis and optimization, Athena Scientific, (2003) · Zbl 1140.90001
[32] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM Journal on Imaging Sciences, 2, 2, 323-343, (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[33] Combettes, P. L.; Pesquet, J.-C., Proximal splitting methods in signal processing, Fixed-point algorithms for inverse problems in science and engineering. Fixed-point algorithms for inverse problems in science and engineering, Springer Optim. Appl., 49, 185-212, (2011), Springer, New York · Zbl 1242.90160 · doi:10.1007/978-1-4419-9569-8_10
[34] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40, 1, 120-145, (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[35] Vu, B. C., A splitting algorithm for dual monotone inclusions involving cocoercive operators, Advances in Computational Mathematics, 38, 3, 667-681, (2013) · Zbl 1284.47045 · doi:10.1007/s10444-011-9254-8
[36] Esser, E.; Zhang, X.; Chan, T. F., A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences, 3, 4, 1015-1046, (2010) · Zbl 1206.90117 · doi:10.1137/09076934X
[37] Combettes, P. L.; Wajs, V. R., Signal recovery by proximal forward-backward splitting, Multiscale Modeling Simulation, 4, 4, 1168-1200, (2005) · Zbl 1179.94031 · doi:10.1137/050626090
[38] Ng, M. K.; Weiss, P.; Yuan, X., Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods, SIAM Journal on Scientific Computing, 32, 5, 2710-2736, (2010) · Zbl 1217.65071 · doi:10.1137/090774823
[39] Ng, M. K.; Chan, R. H.; Tang, W.-C., A fast algorithm for deblurring models with Neumann boundary conditions, SIAM Journal on Scientific Computing, 21, 3, 851-866, (1999) · Zbl 0951.65038 · doi:10.1137/S1064827598341384
[40] Serra-Capizzano, S., A note on antireflective boundary conditions and fast deblurring models, SIAM Journal on Scientific Computing, 25, 4, 1307-1325, (2003/04) · Zbl 1062.65152 · doi:10.1137/S1064827502410244
[41] He, B.; Yuan, X., On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method, SIAM Journal on Numerical Analysis, 50, 2, 700-709, (2012) · Zbl 1245.90084 · doi:10.1137/110836936
[42] Eckstein, J.; Bertsekas, D. P., On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55, 3, Ser. A, 293-318, (1992) · Zbl 0765.90073 · doi:10.1007/BF01581204
[43] Zhao, Q.-N., A convex optimization model based retinex for image enhancement [M.s. Thesis], (2016), University of Electronic Science and Technology of China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.