×

Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations. (English) Zbl 1426.74109

Summary: Grain boundary influence on material properties becomes increasingly significant as grain size is reduced to the nanoscale. Nanostructured materials produced by severe plastic deformation techniques often contain a higher percentage of high-angle grain boundaries in a non-equilibrium or energetically metastable state. Differences in the mechanical behavior and observed deformation mechanisms are common due to deviations in grain boundary structure. Fundamental interfacial attributes such as atomic mobility and energy are affected due to a higher non-equilibrium state, which in turn affects deformation response. In this research, atomistic simulations employing a biased Monte Carlo method are used to approximate representative non-equilibrium bicrystalline grain boundaries based on an embedded atom method potential, leveraging the concept of excess free volume. An advantage of this approach is that non-equilibrium boundaries can be instantiated without the need of simulating numerous defect/grain boundary interactions. Differences in grain boundary structure and deformation response are investigated as a function of non-equilibrium state using Molecular Dynamics. A detailed comparison between copper and aluminum bicrystals is provided with regard to boundary strength, observed deformation mechanisms, and stress-assisted free volume evolution during both tensile and shear simulations.

MSC:

74E20 Granularity
74A25 Molecular, statistical, and kinetic theories in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Agnew, S.; Elliott, B.; Youngdahl, C.; Hemker, K.; Weertman, J.: Microstructure and mechanical behavior of nanocrystalline metals, Materials science and engineering A 285, 391-396 (2000)
[2] Barai, P.; Weng, G. J.: Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, gb zone, and grain-boundary sliding, International journal of plasticity 25, 2410-2434 (2009)
[3] Capolungo, L.; Benkassem, S.; Cherkaoui, M.; Qu, J.: Self-consistent scale transition with imperfect interfaces: application to nanocrystalline materials, Acta materialia 56, 1546-1554 (2008)
[4] Capolungo, L.; Jochum, C.; Cherkaoui, M.; Qu, J.: Homogenization method for strength and inelastic behavior of nanocrystalline materials, International journal of plasticity 21, 67-81 (2005) · Zbl 1112.74472 · doi:10.1016/j.ijplas.2004.02.002
[5] Chokshi, A. H.; Rosen, A.; Karch, J.; Gleiter, H.: On the validity of the Hall-petch relationship in nanocrystalline materials, Scripta metallurgica 23, 1679-1684 (1989)
[6] Chuvil’deev, V.: Micromechanisms of deformation-stimulated grain boundary self-diffusion. Communication 1. Influence of excess free volume on free energy and diffusion parameters of grain boundaries, Fizika metallov i metallovedenie 81, 6-13 (1996)
[7] Chuvil’deev, V.: Effect of grain-boundary free volume on the deformation behavior of materials under conditions of superplasticity, Physics of metals and metallography 86, 521-527 (1998)
[8] Chuvil’deev, V.; Kopylov, V.; Zeiger, W.: A theory of non-equilibrium grain boundaries and its applications to nano and micro-crystalline materials processed by ecap, Annales de chimie (Science des materiaux) 27, 55-64 (2002)
[9] Ertorer, O.; Topping, T.; Li, Y.; Moss, W.; Lavernia, E.: Enhanced tensile strength and high ductility in cryomilled commercially pure titanium, Scripta materialia 60, 586-589 (2009)
[10] Farrokh, B.; Khan, A. S.: Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline cu and al: synthesis, experiment, and constitutive modeling, International journal of plasticity 25, 715-732 (2009) · Zbl 1421.74083
[11] Gleiter, H.: Nanocrystalline materials, Progress in materials science 33, 223-315 (1989)
[12] Hahn, W.; Gleiter, H.: On the structure of vacancies in grain boundaries, Acta metallurgica 29, 601-606 (1981)
[13] Hall, E.: The deformation and aging of mild steel, Proceedings of the royal society of London B 64, 747 (1951)
[14] Horita, Z.; Smith, D. J.; Furukawa, M.; Nemoto, M.; Valiev, R. Z.; Langdon, T. G.: Investigation of grain boundaries in submicrometer-grained al – mg solid solution alloys using high-resolution electron microscopy, Journal of materials research 11, 1880-1890 (1996)
[15] Horita, Z.; Smith, D. J.; Nemoto, M.; Zaliev, R. Z.; Langdon, T. G.: Observations of grain boundary structure in submicrometer-grained cu and ni using high-resolution electron, Journal of materials research 13, 446-450 (1998)
[16] Horstemeyer, M.; Baskes, M.; Prantil, V.; Philliber, J.; Vonderheide, S.: A multiscale analysis of fixed-end simple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state variable theory, Modelling and simulation in materials science and engineering 11, 265-286 (2003)
[17] Horstemeyer, M.F., Baskes, M.I., 1999. Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses, ASME, Washington, DC, USA. pp. 114 – 19.
[18] Horstemeyer, M. F.; Baskes, M. I.; Plimpton, S. J.: Computational nanoscale plasticity simulations using embedded atom potentials, Theoretical and applied fracture mechanics 37, 49-98 (2001)
[19] Islamgaliev, R., Valiev, R., 1999. Non-equilibrium grain boundaries in ultrafine-grained materials processed by severe plastic deformation, Switzerland. pp. 361 – 4.
[20] Kelchner, C. L.; Plimpton, S. J.; Hamilton, J. C.: Dislocation nucleation and defect structure during surface indentation, Physical review B 58, 11085-11088 (1998)
[21] Khan, A. S.; Farrokh, B.; Takacs, L.: Compressive properties of cu with different grain sizes: sub-micron to nanometer realm, Journal of materials science 43, 3305-3313 (2008)
[22] Khan, A. S.; Suh, Y. S.; Xu, C.; Takacs, L.; Haoyue, Z.: Nanocrystalline aluminum and iron: mechanical behavior at quasi-static and high strain rates, and constitutive modeling, International journal of plasticity 22, 195-209 (2006) · Zbl 1330.74031
[23] Khon, Y.; Kolobov, Y.; Ivanov, M.; Butenko, A.: Nonequilibrium state of grain boundaries and spontaneous grain-boundary slippage in bicrystals, Technical physics 53, 328-333 (2008)
[24] Koch, C.: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals, Scripta materialia 49, 657-662 (2003)
[25] Ma, E.: Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta materialia 49, 663-668 (2003)
[26] Ma, E.: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys, Jom 58, 49-53 (2006)
[27] Masumura, R.; Hazzledine, P.; Pande, C.: Yield stress of fine grained materials, Acta materialia 46, 4527-4534 (1998)
[28] Meyers, M. A.; Mishra, A.; Benson, D. J.: Mechanical properties of nanocrystalline materials, Progress in materials science 51, 427-556 (2006)
[29] Mishin, O.; Gertsman, V.; Valiev, R.; Gottstein, G.: Grain boundary distribution and texture in ultrafine-grained copper produced by severe plastic deformation, Scripta materialia 35, 873-878 (1996)
[30] Mishin, Y.; Farkas, D.; Mehl, M. J.; Papaconstantopoulos, D. A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Physical review B 59, 3393-3407 (1999)
[31] Mishin, Y.; Mehl, M. J.; Papaconstantopoulos, D. A.; Voter, A. F.; Kress, J. D.: Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations, Physical review B, 6322 (2001)
[32] Musalimov, R.; Valiev, R.: Dilatometric analysis of aluminium alloy with submicrometre grained structure, Scripta metallurgica et materialia 27, 1685-1690 (1992)
[33] Nazarov, A.; Romanov, A.; Valiev, R.: On the structure, stress fields and energy of nonequilibrium grain boundaries, Acta metallurgica et materialia 41, 1033-1040 (1993)
[34] Nazarov, A.; Romanov, A.; Valiev, R.: Models of the defect structure and analysis of the mechanical behavior of nanocrystals, Nanostructured materials 6, 775-778 (1995)
[35] Olmsted, D. L.; Foiles, S. M.; Holm, E. A.: Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy, Acta materialia 57, 3694-3703 (2009)
[36] Petch, N.: The cleavage strength of polycrystals, Journal of the iron and steel industry 174, 25-28 (1953)
[37] Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics 117, 1-19 (1995) · Zbl 0830.65120 · doi:10.1006/jcph.1995.1039
[38] Randle, V.: The role of the coincident site lattice in grain boundary engineering, (1996)
[39] Rittner, J. D.; Seidman, D. N.: \(\langle 110\rangle \) symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies, Physical review B 54, 6999 (1996)
[40] Sanders, P. G.; Eastman, J. A.; Weertman, J. R.: Elastic and tensile behavior of nanocrystalline copper and palladium, Acta materialia 45, 4019-4025 (1997)
[41] Sansoz, F.; Molinari, J. F.: Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper, Scripta materialia 50, 1283-1288 (2004)
[42] Sansoz, F.; Molinari, J. F.: Mechanical behavior of \(\Sigma \) tilt grain boundaries in nanoscale cu and al: a quasicontinuum study, Acta materialia 53, 1931-1944 (2005)
[43] Schiotz, J.; Di Tolla, F. D.; Jacobsen, K. W.: Softening of nanocrystalline metals at very small grain sizes, Nature 391, 561-563 (1998)
[44] Schiotz, J.; Vegge, T.; Di Tolla, F. D.; Jacobsen, K. W.: Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, Physical review B 60, 11971-11983 (1999)
[45] Spearot, D.; Tschopp, M.; Jacob, K.; Mcdowell, D.: Tensile strength of \(\langle 100\rangle \) and \(\langle 110\rangle \) tilt bicrystal copper interfaces, Acta materialia 55, 705-714 (2007)
[46] Suzuki, A.; Mishin, Y.: Atomistic modeling of point defects and diffusion in copper grain boundaries, Interface science 11, 131-148 (2003)
[47] Suzuki, A.; Mishin, Y.: Interaction of point defects with grain boundaries in fcc metals, Interface science 11, 425-437 (2003)
[48] Tschopp, M.; Tucker, G.; Mcdowell, D.: Structure and free volume of \(\langle 110\rangle \) symmetric tilt grain boundaries with the E structural unit, Acta materialia 55, 3959-3969 (2007)
[49] Tschopp, M.; Tucker, G.; Mcdowell, D.: Atomistic simulations of tension-compression asymmetry in dislocation nucleation for copper grain boundaries, Computational materials science 44, 351-362 (2008)
[50] Ungar, T.; Schafler, E.; Hanak, P.; Bernstorff, S.; Zehetbauer, M.: Vacancy production during plastic deformation in copper determined by in situ x-ray diffraction, Materials science and engineering A 462, 398-401 (2007)
[51] Valiev, R. Z.; Alexandrov, I.: A paradox of severe plastic deformation in metals, Doklady physics 6, 633-635 (2001)
[52] Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties, Nature materials 3, 511-516 (2004)
[53] Valiev, R.: The new trends in fabrication of bulk nanostructured materials by SPD processing, Journal of materials science 42, 1483-1490 (2007)
[54] Valiev, R.; Alexandrov, I.; Zhu, Y.; Lowe, T.: Paradox of strength and ductility in metals processed by severe plastic deformation, Journal of materials research 17, 5-8 (2002)
[55] Valiev, R.; Korznikov, A.; Mulyukov, R.: Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Materials science and engineering A 168, 141-148 (1993)
[56] Valiev, R.; Kozlov, E.; Ivanov, Y.; Lian, J.; Nazarov, A.; Baudelet, B.: Deformation behaviour of ultra-fine-grained copper, Acta metallurgica et materialia 42, 2467-2475 (1994)
[57] Valiev, R.; Krasilnikov, N.; Tsenev, N.: Plastic deformation of alloys with submicron-grained structure, Materials science and engineering A 137, 35-40 (1991)
[58] Valiev, R.; Zehetbauer, M.; Estrin, Y.; Hoppel, H.; Ivanisenko, Y.; Hahn, H.; Wilde, G.; Roven, H.; Sauvage, X.; Langdon, T.: The innovation potential of bulk nanostructured materials, Advanced engineering materials 9, 527-533 (2007)
[59] Van Petegem, S.; Torre, F. Dalla; Segers, D.; Van Swygenhoven, H.: Free volume in nanostructured ni, Scripta materialia 48, 17-22 (2003)
[60] Van Swygenhoven, H.; Derlet, P. M.; Hasnaoui, A.: Atomistic modeling of strength of nanocrystalline metals, Advanced engineering materials 5, 345-350 (2003) · Zbl 1090.74535
[61] Van Swygenhoven, H.; Hasnaoui, A.; Derlet, P. M.: On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation, Acta materialia 50, 3927-3939 (2002)
[62] Van Swygenhoven, H.; Weertman, J. R.: Deformation in nanocrystalline metals, Materials today 9, 24-31 (2006)
[63] Vinogradov, A.; Kaneko, Y.; Kitagawa, K.; Hashimoto, S.; Stolyarov, V.; Valiev, R.: Cyclic response of ultrafine-grained copper at constant plastic strain amplitude, Scripta materialia 36, 1345-1351 (1997)
[64] Voter, A.: Parallel replica method for dynamics of infrequent events, Physical review B 57, 13985-13988 (1998)
[65] Wang, Y. M.; Chen, M. W.; Zhou, F. H.; Ma, E.: High tensile ductility in a nanostructured metal, Nature 419, 912-915 (2002)
[66] Wang, Y. M.; Ma, E.: Strain hardening, strain rate sensitivity, and ductility of nanostructured materials, Materials science and engineering A, 46-52 (2004)
[67] Warner, D. H.; Sansoz, F.; Molinari, J. F.: Atomistic based continuum investigation of plastic deformation in nanocrystalline copper, International journal of plasticity 22, 754-774 (2006) · Zbl 1080.74005 · doi:10.1016/j.ijplas.2005.04.014
[68] Wei, Q.; Zhang, H.; Schuster, B.; Ramesh, K.; Valiev, R.; Kecskes, L.; Dowding, R.; Magness, L.; Cho, K.: Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion, Acta materialia 54, 4079-4089 (2006)
[69] Wu, X.; Zhu, Y.: Partial-dislocation-mediated processes in nanocrystalline ni with nonequilibrium grain boundaries, Applied physics letters 89, 31922-1 (2006)
[70] Wurschum, R.; Greiner, W.; Valiev, R.; Rapp, M.; Sigle, W.; Schneeweiss, O.; Schaefer, H. E.: Interfacial free volumes in ultra-fine grained metals prepared by severe plastic deformation by spark erosion, or by crystallization of amorphous alloys, Scripta metallurgica et materialia 25, 2451-2456 (1991)
[71] Zhao, Y.; Bingert, J.; Zhu, Y.; Liao, X.; Valiev, R.; Horita, Z.; Langdon, T.; Zhou, Y.; Lavernia, E.: Tougher ultrafine grain cu via high-angle grain boundaries and low dislocation density, Applied physics letters 92, 081903-1 (2008)
[72] Zhou, M.: A new look at the atomic level virial stress – on continuum-molecular system equivalence, Proceedings of the royal society of London A 459, 2347-2392 (2003) · Zbl 1060.81062 · doi:10.1098/rspa.2003.1127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.