×

Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. (English) Zbl 1426.74021

Summary: High temperature instrumented indentation testing was used to evaluate the mechanical properties of multiwall carbon nanotubes/epoxy nanocomposite system. Reference neat epoxy samples were also tested and compared with the results obtained for the nanocomposite. The nanoindentation creep tests were utilized to provide the creep strain rate sensitivity parameter, the contact creep compliance and the time-dependent deformation under constant loads. Different thermo-mechanical conditions comprising three temperatures of 25, 40 and 55\(^{\circ}\)C and three loads of 1, 2 and 3 mN were utilized. The improvements in the properties were not as high as anticipated through the use of mixture rule, indicating insufficient dispersion. However, variations in modulus, hardness and creep strain rate sensitivity parameter obtained using nanoindentation showed quantifiable differences between the MWCNTs nanocomposite and epoxy specimens.
The comparison of the creep strain rate sensitivity \(A/d(0)\) from short term, 60 s, creep tests and the creep compliance \(J(t)\) from the long term, 1800 s, creep tests suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The analysis of the creep strain rate sensitivity clearly revealed that the addition of MWCNTs to a commercial epoxy reduced the creep rate. This reduction of creep rate sensitivity parameter was observed particularly at thermal environments just below the glass transition temperature.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74E30 Composite and mixture properties
74C99 Plastic materials, materials of stress-rate and internal-variable type
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Al-Haik, M. S.; Garmestani, H.; Li, D. S.; Hussaini, M. Y.; Sablin, S. S.; Tannenbaum, R.; Dahmen, K. H.: Mechanical properties of magnetically oriented epoxy, Journal of polymer science part B: polymer physics 42, 1586-1600 (2004)
[2] Al-Haik, M. S.; Garmestani, H.; Savran, A.: Explicit and implicit viscoplastic models for polymeric composites, International journal of plasticity 20, 1875-1907 (2004) · Zbl 1066.74506 · doi:10.1016/j.ijplas.2003.11.017
[3] Al-Haik, M. S.; Hussaini, M. Y.; Garmestani, H.: Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network, International journal of plasticity 22, 1367-1392 (2006) · Zbl 1161.74326 · doi:10.1016/j.ijplas.2005.09.002
[4] Beake, B. D.: Modeling indentation creep of polymers a phenomenological approach, Journal of physics D: Applied physics 39, 4478-4485 (2006)
[5] Beake, B. D.; Bell, G. A.; Brostow, W.; Chonkaew, W.: Nanoindentation creep and Glass transition temperatures in polymers, Polymer international 56, 773-778 (2007)
[6] Beake, B. D.; James, J. F.: High-temperature nanoindentation testing of fused silica and other materials, Philosophical magazine A 82, 2179-2186 (2002)
[7] Berthoud, P.; Baumberger, T.; G’sell, C.; Hiver, J. -M.: Physical analysis of the state- and rate-dependent friction law: static friction, Physical review B 59, 14313-14327 (1999)
[8] Berthoud, P.; Sell, C. G.; Hiver, J. M.: Elastic – plastic indentation creep of glassy \(poly(methyl methacrylate)\) and polystyrene: characterization using uniaxial compression and indentation tests, Journal of physics D: Applied physics 32, 2923-2932 (1999)
[9] Bower, C.; Rosen, R.; Han, J.; Zhou, O.: Deformation of carbon nanotubes in nanotube polymer composite, Applied physics letters 74, 3317-3319 (1999)
[10] Brechet, Y.; Esterin, Y.: The effect of strain rate sensitivity on dynamic friction of metals, Scripta metallurgica et materialia 30, 1449-1454 (1994)
[11] Camponeschi, E.; Vance, R.; Al-Haik, M.; Garmestani, H.; Tannenbaum, R.: Properties of carbon nanotube – polymer composites aligned in a magnetic field, Carbon 45, 2037-2046 (2007)
[12] Chudoba, T.; Richter, F.: Investigation of creep behavior under load during indentation experiments and its influence on hardness and modulus results, Surface and coatings technology 148, 191-198 (2001)
[13] Dutta, A. K.; Penumadu, D.; Files, B.: Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube – reinforced epoxy composite, Journal of materials research 19, 158-164 (2004)
[14] Findley, W. N.; Lai, J. S.; Onaran, K.: Creep and relaxation of nonlinear viscoelastic materials: with an introduction to linear viscoelasticity, (1989) · Zbl 0345.73034
[15] Fischer-Cripps, A. C.: Nanoindentation, (2002)
[16] Flory, P. J.: Principles of polymer chemistry, (1995)
[17] Ganb, M.; Satapathy, B. K.; Thunga, M.; Weidisch, R.; Potschke, P.; Janke, A.: Temperature dependence of creep behavior of PP-MWNT nanocomposites, Macromolecular rapid communication 28, 1624-1633 (2007)
[18] Garmestani, H.; Al-Haik, M. S.; Dahmen, K.; Tannenbaum, R.; Li, D. S.; Sablin, S. S.; Hussaini, M. Y.: Polymer-mediated alignment of carbon nanotubes under high magnetic fields, Advanced materials 15, 1918-1921 (2003)
[19] Giraldo, L. F.; Lopez, B. L.; Bostow, W.: Effect of the type of carbon nanotubes on tribological properties of polyamide 6, Polymer engineering and science 49, 896-902 (2009)
[20] Gong, X.; Liu, J.; Baskaran, S.; Voise, R.; Young, J. S.: Surfactant assisted processing of carbon nanotubes/polymer composites, Chemistry of materials 12, 1049-1052 (2000)
[21] Gray, A.; Beake, B. D.: Elevated temperature nanoindentation and viscoelastic behaviour of thin poly (ethylene terephthalate) films, Journal of nanoscience and nanotechnology 7, 2530-2533 (2007)
[22] Gray, A.; Orecchia, D.; Beake, B. D.: Nanoindentation of advanced polymers under non-ambient conditions: creep modeling and tan delta, Journal of nanoscience and nanotechnology 9, 4514-4519 (2009)
[23] Juliano, T. F.; Vanlandingham, M. R.; Tweedie, C. A.; Van Vliet, K. J.: Multiscale creep compliance of epoxy networks at elevated temperatures, Experimental mechanics 47, 99-105 (2007)
[24] Kao, C. C.; Young, R. J.: Assessment of interface damage during the deformation of carbon nanotubes composites, Journal of materials science 45, 1425-1431 (2010)
[25] Li, C. Y.; Wei, T. W.: Multiscale modeling of compressive behavior of carbon nanotube polymer composites, Composites science and technology 66, 2409-2414 (2006)
[26] Li, K.; Gao, X. L.; Roy, A. K.: Micromechanical modeling of viscoelastic properties of carbon nanotube reinforced polymer composites, Mechanics of advanced materials and structures 13, 317-328 (2006)
[27] Li, W. H.; Chen, X. H.; Chen, C. S.; Xu, L. S.; Yang, Z.; Wang, Y. G.: Preparation and shear properties of carbon nanotubes/poly (butyl methacrylate) hybrid material, Polymer composites 29, 972-977 (2008)
[28] Lu, H.; Wang, B.; Ma, J.; Huang, G.; Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation, Mechanics of time-dependent materials 7, 189-207 (2003)
[29] Oliver, W. C.; Pharr, G. M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of materials research 7, 1564-1583 (1992)
[30] Plaseied, A.; Fatemi, A.: Tensile creep and deformation modeling of vinyl ester polymer and its nanocomposites, Journal of reinforced plastics and composites 28, 1775-1788 (2009)
[31] Selmi, A.; Friebel, C.; Doghri, I.; Hassis, H.: Prediction of the elastic properties of single walled carbon nanotubes reinforced polymers, Composites science and technology 67, 2071-2084 (2007)
[32] Shaffer, M. S.; Windle, A. H.: Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composite, Advanced materials 11, 937-941 (1999)
[33] Smith, J. F.; Zheng, S.: High temperature nanoscale mechanical property measurements, Surface engineering 16, 143-146 (2000)
[34] Suher, J.; Koratkar, N.; Keblinski, P.; Ajayan, P.: Viscoelasticity in carbon nanotubes composites, Nature materials 4, 134-137 (2005)
[35] Sun, L. Y.; Gibson, R. F.; Gordaninejad, F.; Suher, J.: Energy absorption capability of nanocomposites: a review, Composites science and technology 69, 2392-2409 (2009)
[36] Thostenson, E. T.; Chou, T. W.: Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization, Journal of physics D: Applied physics 35, L77-L80 (2002)
[37] Ting, T. C. T.: The contact stresses between a rigid indenter and a viscoelastic half-space, Journal of applied mechanics 88, 845-854 (1966) · Zbl 0154.22502 · doi:10.1115/1.3625192
[38] Tweedie, C. A.; Van Vliet, K. J.: Contact creep compliance of viscoelastic materials via nanoindentation, Journal of materials research 21, 1576-1589 (2006)
[39] Vanlandingham, M. R.; Chang, N. -K.; Drzal, P. L.; White, C. C.; Chang, S. -H.: Viscoelastic characterization of polymers using instrumented indentation. I. quasi-static testing, Journal of polymer science part B: polymer physics 43, 1794-1811 (2005)
[40] Wang, C.; Xue, T.; Dong, B.; Wang, Z.; Li, H. L.: Polysteyrene – acrylonitrile cnts nanocomposites preparation and tribological behavior research, Wear 265, 1923-1926 (2008)
[41] Yang, J.; Zhang, Z.; Friedrich, K.; Schlarb, A. K.: Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes, Macromolar rapid communications 28, 955-961 (2007)
[42] Yang, S.; Zhang, Y. -W.; Zeng1, K.: Analysis of nanoindentation creep for polymeric materials, Journal of applied physics 95, 3655-3666 (2004)
[43] Zhang, W.; Joshi, A.; Wang, Z.; Kane, R. S.; Koratkar, N.: Creep mitigation in composites using carbon nanotubes additives, Nanotechnology, 18 (2007)
[44] Zhou, X., Wang, K.W., Bakis, C.E., 2004. In: SPIE International Symposium of Smart Structures and Materials: Damping Isolation Conference, San Diego, CA, p. 18.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.