×

Estimation of parameters in the \(\mathrm{DDRCINAR}(p)\) model. (English) Zbl 1426.62261

Summary: This paper discusses a \(p\)th-order dependence-driven random coefficient integer-valued autoregressive time series model \((\mathrm{DDRCINAR}(p))\). Stationarity and ergodicity properties are proved. Conditional least squares, weighted least squares and maximum quasi-likelihood are used to estimate the model parameters. Asymptotic properties of the estimators are presented. The performances of these estimators are investigated and compared via simulations. In certain regions of the parameter space, simulative analysis shows that maximum quasi-likelihood estimators perform better than the estimators of conditional least squares and weighted least squares in terms of the proportion of within-\(\Omega\) estimates. At last, the model is applied to two real data sets.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F12 Asymptotic properties of parametric estimators
62E20 Asymptotic distribution theory in statistics
62P10 Applications of statistics to biology and medical sciences; meta analysis

References:

[1] Al-Osh, M. A. and Alzaid, A. A. (1987). First-order integer-valued autoregressive \(( \operatorname{INAR}(1))\) process. Journal of Time Series Analysis8, 261-275. · Zbl 0617.62096
[2] Alzaid, A. and Al-Osh, M. (1988). First-order integer-valued autoregressive \(( \operatorname{INAR}(1))\) process: distributional and regression properties. Statistica Neerlandica42, 53-61. · Zbl 0647.62086
[3] Alzaid, A. A. and Al-Osh, M. (1990). An integer-valued \(p\) th-order autoregressive structure \(( \operatorname{INAR}(p))\) process. Journal of Applied Probability27, 314-324. · Zbl 0704.62081
[4] Billingsley, P. (1961). Statistical Inference for Markov Processes. Chicago: University of Chicago Press. · Zbl 0106.34201
[5] Brännäs, K. and Hellström, J. (2001). Generalized integer-valued autoregression. Econometric Reviews20, 425-443. · Zbl 1077.62530
[6] Brockwell, P. J. and Davis, R. A. (1987). Time Series: Theory and Methods. Media: Springer. · Zbl 0604.62083
[7] Davis, R. A., Dunsmuir, W. T. M. and Wang, Y. (1999). Modeling time series of count data. Statistics Textbooks and Monographs158, 63-113. · Zbl 1069.62540
[8] Drost, F. C., Van Den Akker, R. and Werker, B. J. (2008). Local asymptotic normality and efficient estimation for \(\operatorname{INAR}(p)\) models. Journal of Time Series Analysis29, 783-801. · Zbl 1199.62007
[9] Drost, F. C., Van Den Akker, R. and Werker, B. J. (2009). Efficient estimation of auto-regression parameters and innovation distributions for semiparametric integer-valued \(\operatorname{AR}(p)\) models. Journal of the Royal Statistical Society, Series B, Statistical Methodology71, 467-485. · Zbl 1248.62147
[10] Du, J. G. and Li, Y. (1991). The integer-valued autoregressive \(( \operatorname{INAR}(p))\) model. Journal of Time Series Analysis12, 129-142. · Zbl 0727.62084
[11] Franke, J. and Seligmann, T. (1993). Conditional maximum likelihood estimates for \(\operatorname{INAR}(1)\) processes and their application to modelling epileptic seizure counts. Developments in Time Series Analysis, 310-330. · Zbl 0878.62080
[12] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Applications. New York: Academic Press. · Zbl 0462.60045
[13] Hutton, J. E. and Nelson, P. I. (1986). Quasi-likelihood estimation for semimartingales. Stochastic Processes and Their Applications22, 245-257. · Zbl 0616.62113
[14] Hwang, S. Y. and Basawa, I. V. (1998). Parameter estimation for generalized random coefficient autoregressive processes. Journal of Statistical Planning and Inference68, 323-337. · Zbl 0942.62102
[15] Klimko, L. A. and Nelson, P. I. (1978). On conditional least squares estimation for stochastic processes. The Annals of Statistics6, 629-642. · Zbl 0383.62055
[16] Latour, A. (1997). The multivariate \(\operatorname{GINAR}(p)\) process. Advances in Applied Probability29, 228-248. · Zbl 0871.62073
[17] Latour, A. (1998). Existence and stochastic structure of a non-negative integer-valued autoregressive process. Journal of Time Series Analysis19, 439-455. · Zbl 1127.62402
[18] Li, C., Wang, D. and Zhang, H. (2015). First-order mixed integer-valued autoregressive processes with zero-inflated generalized power series innovations. Journal of the Korean Statistical Society44, 232-246. · Zbl 1328.62527
[19] Li, Q., Lian, H. and Zhu, F. (2016). Robust closed-form estimators for the integer-valued \(\operatorname{GARCH}(1,1)\) model. Computational Statistics & Data Analysis101, 209-225. · Zbl 1466.62141
[20] Nicholls, D. F. and Quinn, B. G. (1982). Random Coefficient Autoregressive Models: An Introduction, Vol. 11. Springer Science and Business Media. · Zbl 0497.62081
[21] Steutel, F. W. and Van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Annals of Probability7, 893-899. · Zbl 0418.60020
[22] Zhang, H. and Wang, D. (2015). Inference for random coefficient \(\operatorname{INAR}(1)\) process based on frequency domain analysis. Communications in Statistics Simulation and Computation44, 1078-1100. · Zbl 1315.62074
[23] Zheng, H. and Basawa, I. V. (2008). First-order observation-driven integer-valued autoregressive processes. Statistics and Probability Letters78, 1-9. · Zbl 1131.62084
[24] Zheng, H., Basawa, I. V. and Datta, S. (2006). Inference for \(p\) th-order random coefficient integer-valued autoregressive processes. Journal of Time Series Analysis27, 411-440. · Zbl 1126.62086
[25] Zheng, H., Basawa, I. V. and Datta, S. (2007). First-order random coefficient integer-valued autoregressive processes. Journal of Statistical Planning and Inference137, 212-229. · Zbl 1098.62117
[26] Zhu, R. and Joe, H. (2006). Modelling count data time series with Markov processes based on binomial thinning. Journal of Time Series Analysis27, 725-738. · Zbl 1111.62085
[27] Zikun, W. (1965). Stochastic Process Theory. Beijing: Scientific Press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.