×

Some alternative bivariate Kumaraswamy-type distributions via copula with application in risk management. (English) Zbl 1426.62153

Summary: In this article we discuss various strategies for constructing bivariate Kumaraswamy distributions via the copula approach. The copula methods and construction studied here are different from those briefly discussed in [B. C. Arnold and the first author, Commun. Stat., Theory Methods 46, No. 18, 9335–9354 (2017; Zbl 1377.60027)]. In this article, bivariate normal copula, AMH (Ali-Mikhail-Haq), and Marshall-Olkin copula generators were assumed to construct bivariate Kumaraswamy models. Additionally, we consider here a few different types of copula generators, which subsume Clayton copula type generators. Various structural properties of the derived copulas including tail dependence, correlation coefficient, and others are discussed.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62H10 Multivariate distribution of statistics
62P05 Applications of statistics to actuarial sciences and financial mathematics

Citations:

Zbl 1377.60027
Full Text: DOI

References:

[1] Arnold, B. C., and I. Ghosh. 2016. Some alternative bivariate Kumaraswamy models. Communications in Statistics: Theory and Methods forthcoming. · Zbl 1377.60027 · doi:10.1080/03610926.2016.1208244
[2] Azzalini, A., and A. Capitanio. 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. IEICE Transactions on Fundamentals. Journal of the Royal Statistical Society, Series B 65:367-389. · Zbl 1065.62094 · doi:10.1111/1467-9868.00391
[3] Balakrishnan, N., and C. D. Lai. 2009. Continuous bivariate distributions, 2nd ed. New York, NY: Springer. · Zbl 1267.62028
[4] Chen, X., and Y. Fan. 2005. Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection. Canadian Journal of Statistics 33:389-414. · Zbl 1077.62032 · doi:10.1002/cjs.5540330306
[5] Cook, R. D., and M. E. Johnson. 1981. A family of distributions for modeling non-elliptically symmetric multivariate data. Journal of the Royal Statistical Society, Series B 43:210-18. · Zbl 0471.62046
[6] Cook, R. D., and M. E. Johnson. 1986. Generalized Burr-Pareto – logistic distributions with applications to a uranium exploration data set. Technometrics 28:123-31. · doi:10.1080/00401706.1986.10488113
[7] Eugene, N., C. Lee, and F. Famoye. 2002. Beta-normal distribution and its applications. Communications in Statistics: Theory and Methods 31:497-512. · Zbl 1009.62516 · doi:10.1081/STA-120003130
[8] Frees, E. W., and E. A. Valdez. 1998. Understanding relationships using copulas. North American Actuarial Journal 2:1-25. · Zbl 1081.62564 · doi:10.1080/10920277.1998.10595667
[9] Genest, C., J. R. Quessy, and B. Remillard. 2006. Goodness-of-fit procedures for copula models based on the probability integral transformation. Scandinavian Journal of Statistics. 33:337-366. doi:10.1111/j.1467-9469.2006.00470. · Zbl 1124.62028 · doi:10.1111/j.1467-9469.2006.00470.x
[10] Ghosh, I., and S. Nadarajah. 2015. A new class of weighted bivariate Kumaraswamy distributions with an application to drought and health care data. Communications in Statistics-Theory & Methods submitted.
[11] Hansen, B. E. 1994. Autoregressive conditional density estimation. International Economic Review 35:705-30. · Zbl 0807.62090 · doi:10.2307/2527081
[12] Jones, M. C. 2004. Families of distributions arising from distributions of order statistics. Test 13:1-43. · Zbl 1110.62012 · doi:10.1007/BF02602999
[13] Jones, M. C. 2009. A beta-type distribution with some tractability advantages. Statistical Methodology 6:70-81. · Zbl 1215.60010 · doi:10.1016/j.stamet.2008.04.001
[14] Klugman, S. A., and R. Parsa. 1999. Fitting bivariate loss distributions with copulas. Insurance Mathematics and Economics 24:139-48. · Zbl 0931.62044 · doi:10.1016/S0167-6687(98)00039-0
[15] Kumaraswamy, P. 1980. Generalized probability density-function for double-bounded random-processes. Journal of Hydrology 462:79-88. · doi:10.1016/0022-1694(80)90036-0
[16] Kotz, S., N. Balakrishnan, and N. L. Johnson. 2000. Continuous multivariate distributions—Vol. 1, 2nd ed. New York, NY: John Wiley & Sons. · Zbl 0946.62001 · doi:10.1002/0471722065
[17] Marshall, A. W., and I. Olkin. 1988. Families of multivariate distributions. Journal of the American Statistical Association 83:834-41. · Zbl 0683.62029 · doi:10.1080/01621459.1988.10478671
[18] Nadarajah, S., G. M. Cordeiro, and E. M. M. Ortega. 2011. General results for the Kumaraswamy-G distribution. Journal of Statistical Computation and Simulation 82:951-979. doi:10.1080/ 00949655.2011.562504. · Zbl 1431.62049 · doi:10.1080/00949655.2011.562504
[19] Nelsen, R. B. 1999. An introduction to copulas. New York, NY: Springer-Verlag. · Zbl 0909.62052 · doi:10.1007/978-1-4757-3076-0
[20] Pougaza, D. B., and M. A. Djafari. 2011. Maximum entropies copulas. Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 329-36.
[21] Trivedi, P. K., and D. M. Zimmer. 2007. Copula modeling: An introduction for practitioners. Foundations and Trends in Econometrics 1:1-111. · Zbl 1195.91130 · doi:10.1561/0800000005
[22] Wagner, B. S., and A. J. Lemonte. 2013. Bivariate Kumaraswamy distribution: Properties and a new method to generate bivariate classes. Statistics 47:1-22. · Zbl 1368.62234 · doi:10.1080/02331888.2011.577895
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.