×

Gabor expansions of signals: computational aspects and open questions. (English) Zbl 1426.42030

Boggiatto, Paolo (ed.) et al., Landscapes of time-frequency analysis. Based on talks given at the inaugural conference on aspects of time-frequency analysis, Turin, Italy, July 5–7, 2018. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 173-206 (2019).
From the author’s summary: “In the last 40 years the foundations of Gabor analysis, even in the context of locally compact abelian (LCA) groups. have been widely developed. We know a lot about spaces, in particular modulation spaces …In contrast, the applied literature gives the impression that the computation of dual Gabor windows in the standard situation …is still the most important problem in (numerical) Gabor analysis. The emphasis of this note is on the value of numerical work, which is much more than the numerical realization of numerical concepts. It has been in many cases the inspiration for the derivation of theoretical results …Overall, we observe that there is an urgent need for a stronger link between computational and theoretical Gabor analysis. The note also contains a number of suggestions and even conjectures which are likely to encourage research in the direction indicated above.”
This survey has 115 bibliographical references and is divided into 13 sections titled: Introduction, Goals for numerical Gabor analysis, The standard literature, The classical frame algorithm, The idea of double preconditioning, The Janssen representation, Gabor multipliers, Numerical illustrations, Computations benefitting from theory, What are good Gabor systems?, The role of the Zak transform, Transfer from \(R\) to \(Z_n\), and Acknowledgements.
The paper ends with a suggestion that in order to avoid duplication for people working on the issues raised in this work, they should contact the author to coordinate their efforts.
For the entire collection see [Zbl 1411.35009].

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
42C15 General harmonic expansions, frames
65T60 Numerical methods for wavelets
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] I. Amidror. Mastering the Discrete Fourier Transform in One, Two or Several Dimensions. Pitfalls and Artifacts, volume 43. London: Springer, 2013. · Zbl 1277.65119
[2] P. Balazs, M. Dörfler, F. Jaillet, N. Holighaus, and G. A. Velasco. Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math., 236(6):1481-1496, 2011. · Zbl 1236.94026
[3] P. Balazs, H. G. Feichtinger, M. Hampejs, and G. Kracher. Double preconditioning for Gabor frames. IEEE Trans. Signal Process., 54(12):4597-4610, December 2006. · Zbl 1203.65069
[4] S. Bannert, K. Gröchenig, and J. Stöckler. Discretized Gabor frames of totally positive functions. IEEE Trans. Information Theory, 60(1):159-169, 2014. · Zbl 1364.42034
[5] S. Bannert. Banach-Gelfand Triples and Applications in Time-Frequency Analysis. Master’s thesis, University of Vienna, 2010.
[6] P. Boggiatto and E. Cordero. Anti-Wick quantization with symbols in \({L}^p\) spaces. Proc. Amer. Math. Soc., 130(9):2679-2685, 2002. · Zbl 1048.47038
[7] P. Boggiatto, E. Cordero, and K. Gröchenig. Generalized anti-Wick operators with symbols in distributional Sobolev spaces. Integr. Equ. Oper. Theory, 48(4):427-442, 2004. · Zbl 1072.47045
[8] A. Borichev, K. Gröchenig, and Y. I. Lyubarskii. Frame constants of Gabor frames near the critical density. J. Math. Pures Appl., 94(2):170-182, August 2010. · Zbl 1202.94114
[9] P. G. Casazza and O. Christensen. Weyl-Heisenberg frames for subspaces of \({L}^2({R})\). Proc. Amer. Math. Soc., 129(1):145-154, 2001. · Zbl 0987.42023
[10] O. Christensen, A. Janssen, H. Kim, and R. Kim. Approximately dual Gabor frames and almost perfect reconstruction based on a class of window functions. Adv. Comput. Math., 1-17, 2018. · Zbl 1404.42064
[11] O. Christensen. An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser Basel, Second edition, 2016. · Zbl 1348.42033
[12] L. A. Coburn. Berezin-Toeplitz quantization. In Curto, Ral E (ed) et al, Algebraic Methods in Operator Theory Boston, MA: Birkhäuser 101-108. 1994. · Zbl 0836.46062
[13] E. Cordero and K. Gröchenig. On the product of localization operators. In M. Wong, editor, Modern Trends in Pseudo-differential Operators, volume 172 of Oper. Theory Adv. Appl., 279-295. Birkhäuser, Basel, 2007. · Zbl 1137.35089
[14] E. Cordero and K. Gröchenig. Symbolic calculus and Fredholm property for localization operators. J. Fourier Anal. Appl., 12(4):371-392, 2006. · Zbl 1104.35079
[15] E. Cordero and K. Gröchenig. Time-frequency analysis of localization operators. J. Funct. Anal., 205(1):107-131, 2003. · Zbl 1047.47038
[16] E. Cordero and L. Rodino. Short-time Fourier transform analysis of localization operators. volume 451, pages 47-68. Providence, RI: American Mathematical Society (AMS), 2008. · Zbl 1166.47048
[17] E. Cordero and L. Rodino. Wick calculus: a time-frequency approach. Osaka J. Math., 42(1):43-63, 2005. · Zbl 1075.35126
[18] E. Cordero and A. Tabacco. Localization operators via time-frequency analysis. In Advances in Pseudo-differential Operators, volume 155 of Oper. Theory Adv. Appl., pages 131-147. Birkhäuser, 2004. · Zbl 1096.35128
[19] E. Cordero, H. G. Feichtinger, and F. Luef. Banach Gelfand triples for Gabor analysis. In Pseudo-differential Operators, volume 1949 of Lecture Notes in Mathematics, pages 1-33. Springer, Berlin, 2008. · Zbl 1161.35060
[20] E. Cordero, K. Gröchenig, and F. Nicola. Approximation of Fourier integral operators by Gabor multipliers. J. Fourier Anal. Appl., 18(4):661-684, 2012. · Zbl 1264.35296
[21] E. Cordero, K. Gröchenig, F. Nicola, and L. Rodino. Wiener algebras of Fourier integral operators. J. Math. Pures Appl. (9), 99(2):219-233, 2013. · Zbl 1306.42045
[22] E. Cordero, F. Nicola, and L. Rodino. Time-frequency analysis of Fourier integral operators. Commun. Pure Appl. Anal., 9(1):1-21, 2010. · Zbl 1196.42027
[23] E. Cordero, L. Rodino, and K. Gröchenig. Localization operators and time-frequency analysis. In N. e. a. Chong, editor, Harmonic, Wavelet and p-adic Analysis, pages 83-110. World Sci. Publ., Hackensack, 2007. · Zbl 1149.47035
[24] X.-R. Dai and Q. Sun. The \(abc\)-problem for Gabor systems. Mem. Amer. Math. Soc., 244(1152):ix+99, 2016.
[25] X.-R. Dai and Q. Sun. The abc-problem for Gabor systems and uniform sampling in shift-invariant spaces. In Excursions in Harmonic Analysis, Volume 3, pages 177-194. 2015. · Zbl 1362.42062
[26] I. Daubechies, A. Grossmann, and I. Meyer. Frames in the Bargmann space of entire functions. Comm. Pure Appl. Math., 41:151-164, 1990. · Zbl 0632.30049
[27] I. Daubechies, A. Grossmann, and Y. Meyer. Painless nonorthogonal expansions. J. Math. Phys., 27(5):1271-1283, May 1986. · Zbl 0608.46014
[28] I. Daubechies, H. J. Landau, and Z. Landau. Gabor time-frequency lattices and the Wexler-Raz identity. J. Fourier Anal. Appl., 1(4):437-478, 1995. · Zbl 0888.47018
[29] I. Daubechies. Ten Lectures on Wavelets., volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA, 1992. · Zbl 0776.42018
[30] I. Daubechies. Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inform. Theory, 34(4):605-612, July 1988. · Zbl 0672.42007
[31] J. G. Daugman. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoustics, Speech and Signal Processing, 36(7):1169-1179, 1988. · Zbl 0709.94577
[32] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72:341-366, 1952. · Zbl 0049.32401
[33] M. Englis. Toeplitz operators and localization operators. Trans. Amer. Math. Soc., 361(2):1039-1052, 2009. · Zbl 1165.47019
[34] M. Faulhuber and S. Steinerberger. Optimal Gabor frame bounds for separable lattices and estimates for Jacobi theta functions. J. Math. Anal. Appl., 445(1):407-422, 2017. · Zbl 1351.42039
[35] M. Faulhuber. Extremal Bounds of Gaussian Gabor Frames and Properties of Jacobi’s Theta Functions. PhD thesis, 2016.
[36] M. Faulhuber. Gabor frame sets of invariance: a Hamiltonian approach to Gabor frame deformations. J. Pseudo-Differ. Oper. Appl., 7(2):213-235, June 2016. · Zbl 1359.42015
[37] M. Faulhuber. Geometry and Gabor Frames. Master’s thesis, 2014.
[38] M. Faulhuber. Minimal frame operator norms via minimal theta functions. J. Fourier Anal. Appl., 24(2):545-559, April 2018. · Zbl 1387.42039
[39] H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., 86(2):307-340, 1989. · Zbl 0691.46011
[40] H. G. Feichtinger and K. Gröchenig. Gabor frames and time-frequency analysis of distributions. J. Funct. Anal., 146(2):464-495, 1997. · Zbl 0887.46017
[41] H. G. Feichtinger and N. Kaiblinger. 2D-Gabor analysis based on 1D algorithms. In Proc. OEAGM-97 (Hallstatt, Austria), 1997.
[42] H. G. Feichtinger and N. Kaiblinger. Quasi-interpolation in the Fourier algebra. J. Approx. Theory, 144(1):103-118, 2007. · Zbl 1108.41006
[43] H. G. Feichtinger and N. Kaiblinger. Varying the time-frequency lattice of Gabor frames. Trans. Amer. Math. Soc., 356(5):2001-2023, 2004. · Zbl 1033.42033
[44] H. G. Feichtinger and W. Kozek. Quantization of TF lattice-invariant operators on elementary LCA groups. In H. G. Feichtinger and T. Strohmer, editors, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., pages 233-266. Birkhäuser, Boston, MA, 1998. · Zbl 0890.42012
[45] H. G. Feichtinger and F. Luef. Wiener amalgam spaces for the Fundamental Identity of Gabor Analysis. Collect. Math., 57(Extra Volume (2006)):233-253, 2006. · Zbl 1135.39303
[46] H. G. Feichtinger and K. Nowak. A first survey of Gabor multipliers. In H. G. Feichtinger and T. Strohmer, editors, Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., pages 99-128. Birkhäuser, 2003. · Zbl 1032.42033
[47] H. G. Feichtinger and K. Nowak. A Szegö-type theorem for Gabor-Toeplitz localization operators. Michigan Math. J., 49(1):13-21, 2001. · Zbl 1010.47021
[48] H. G. Feichtinger and D. Onchis. Constructive realization of dual systems for generators of multi-window spline-type spaces. J. Comput. Appl. Math., 234(12):3467-3479, 2010. · Zbl 1196.65036
[49] H. G. Feichtinger and T. Strohmer. Advances in Gabor Analysis. Birkhäuser, Basel, 2003. · Zbl 1005.00015
[50] H. G. Feichtinger and T. Strohmer. Gabor Analysis and Algorithms. Theory and Applications. Birkhäuser, Boston, 1998. · Zbl 0890.42004
[51] H. G. Feichtinger and G. Zimmermann. A Banach space of test functions for Gabor analysis. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, pages 123-170. Birkhäuser Boston, 1998. · Zbl 0890.42008
[52] H. G. Feichtinger, W. Kozek, and F. Luef. Gabor Analysis over finite Abelian groups. Appl. Comput. Harmon. Anal., 26(2):230-248, 2009. · Zbl 1162.43002
[53] H. G. Feichtinger. A compactness criterion for translation invariant Banach spaces of functions. Analysis Mathematica, 8:165-172, 1982. · Zbl 0515.46043
[54] H. G. Feichtinger. Banach Gelfand triples for applications in physics and engineering. volume 1146 of AIP Conf. Proc., pages 189-228. Amer. Inst. Phys., 2009.
[55] H. G. Feichtinger. Compactness in translation invariant Banach spaces of distributions and compact multipliers. J. Math. Anal. Appl., 102:289-327, 1984. · Zbl 0515.46044
[56] H. G. Feichtinger. Modulation spaces of locally compact Abelian groups. In R. Radha, M. Krishna, and S. Thangavelu, editors, Proc. Internat. Conf. on Wavelets and Applications, pages 1-56, Chennai, January 2002, 2003. New Delhi Allied Publishers.
[57] H. G. Feichtinger. Modulation Spaces: Looking Back and Ahead. Sampl. Theory Signal Image Process., 5(2):109-140, 2006. · Zbl 1156.43300
[58] H. G. Feichtinger. Spline-type spaces in Gabor analysis. In D. X. Zhou, editor, Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4-8, 2001, volume 1 of Ser. Anal., pages 100-122. World Sci.Pub., River Edge, NJ, 2002. · Zbl 1034.42029
[59] D. Gabor. Theory of communication. J. IEE, 93(26):429-457, 1946.
[60] K. Gröchenig and S. Koppensteiner. Gabor Frames: characterizations and coarse structure. ArXiv e-prints, mar 2018. · Zbl 1442.81030
[61] K. Gröchenig and M. Leinert. Wiener’s lemma for twisted convolution and Gabor frames. J. Amer. Math. Soc., 17:1-18, 2004. · Zbl 1037.22012
[62] K. Gröchenig and J. Stöckler. Gabor frames and totally positive functions. Duke Math. J., 162(6):1003-1031, 2013. · Zbl 1277.42037
[63] K. Gröchenig and G. Zimmermann. Spaces of test functions via the STFT. J. Funct. Spaces Appl., 2(1):25-53, 2004. · Zbl 1069.46021
[64] K. Gröchenig. Acceleration of the frame algorithm. IEEE Trans. SSP, 41/12:3331-3340, 1993. · Zbl 0841.94009
[65] K. Gröchenig. An uncertainty principle related to the Poisson summation formula. Studia Math., 121(1):87-104, 1996. · Zbl 0866.42005
[66] K. Gröchenig. Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser, Boston, MA, 2001. · Zbl 0966.42020
[67] M. Hampejs and L. Tóth. On the subgroups of finite Abelian groups of rank three. Annales Univ. Sci. Budapest., Sect. Comp., 39:111-124, 2013. · Zbl 1274.20046
[68] X. He and H. Li. On the \(abc\)-problem in Weyl-Heisenberg frames. Czechoslovak Math. J., 64(139)(2):447-458, 2014. · Zbl 1340.42073
[69] F. Hlawatsch, G. Matz, H. Kirchauer, and W. Kozek. Time-frequency formulation and design of time-varying optimal filters. IEEE Trans. Signal Process., 1997. · Zbl 1010.94521
[70] F. Hlawatsch, G. Matz, H. Kirchauer, and W. Kozek. Time-frequency formulation, design, and implementation of time-varying optimal filters for signal estimation. IEEE Trans. Signal Process., 48(5):1417-1432, 2000. · Zbl 1010.94521
[71] N. Holighaus, M. Dörfler, G. A. Velasco, and T. Grill. A framework for invertible, real-time constant-Q transforms. IEEE Trans. Audio Speech Lang. Process., 21(4):775 -785, 2013.
[72] N. Holighaus, M. Hampejs, C. Wiesmeyr, and L. Tóth. Representing and counting the subgroups of the group \({Z}_m \times{Z}_n\). J. Number Theory, 2014:6, 2014. · Zbl 1423.11172
[73] N. Holighaus. Theory and Implementation of Adaptive Time-Frequency Transforms. PhD thesis, University of Vienna, 2013.
[74] O. Hutnik. On Toeplitz localization operators. Arch. Math. (Basel), 97:333-344, 2011. · Zbl 1231.47026
[75] M. S. Jakobsen and H. G. Feichtinger. The inner kernel theorem for a certain Segal algebra. ArXiv e-prints, June 2018. · Zbl 07557943
[76] A. J. E. M. Janssen. Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl., 1(4):403-436, 1995. · Zbl 0887.42028
[77] A. J. E. M. Janssen. Gabor representation of generalized functions. J. Math. Anal. Appl., 83:377-394, October 1981. · Zbl 0473.46028
[78] N. Kaiblinger. Approximation of the Fourier transform and the dual Gabor window. J. Fourier Anal. Appl., 11(1):25-42, 2005. · Zbl 1064.42022
[79] T. Kloos and J. Stöckler. Zak transforms and Gabor frames of totally positive functions and exponential B-splines. J. Approx. Theory, 184:209-237, 2014. · Zbl 1291.42024
[80] T. Kloos, J. Stöckler, and K. Gröchenig. Implementation of discretized Gabor frames and their duals. IEEE Trans. Inform. Theory, 62(5):2759-2771, 2016. · Zbl 1359.94046
[81] W. Kozek and K. Riedel. Quadratic time-varying spectral estimation for underspread processes. In Proc. IEEE-SP Internat. Symp. on Time-Frequency and Time-scale Analysis, pages 417-420, Philadelphia/PA, October 1994.
[82] W. Kozek. Adaptation of Weyl-Heisenberg frames to underspread environments. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 323-352. Birkhäuser Boston, Boston, 1997. · Zbl 0890.42015
[83] W. Kozek. On the underspread/overspread classification of nonstationary random processes. In K. Kirchgaessner, Mahrenholtz, and R. Mennicken, editors, Proc. ICIAM 95, Hamburg, July 1995, volume 3 of Mathematical Research, pages 63-66, Berlin, 1996. Akademieverlag. · Zbl 0925.60037
[84] J. Lemvig. On some Hermite series identities and their applications to Gabor analysis. Monatsh. Math., 182(4):899-912, April 2017. · Zbl 1364.42037
[85] Y. Lyubarskii. Frames in the Bargmann space of entire functions. In Entire and Subharmonic Functions, Advances in Soviet Mathematics, 11:167-180, Amer. Math. Soc., 1992. · Zbl 0770.30025
[86] A. Missbauer. Gabor Frames and the Fractional Fourier Transform. Master’s thesis, University of Vienna, 2012.
[87] M. Porat and Y. Y. Zeevi. The generalized Gabor scheme of image representation in biological and machine vision. IEEE Trans. Patt. Anal. Mach. Intell., 10(4):452-468, July 1988. · Zbl 0645.92026
[88] Z. Prusa, P. Sondergaard, P. Balazs, and N. Holighaus. LTFAT: A Matlab/Octave toolbox for sound processing. In Proc. 10th International Symposium on Computer Music Multidisciplinary Research (CMMR), pages 299-314, 2013.
[89] Z. Prusa. The Phase Retrieval Toolbox. In Audio Engineering Society Conference: 2017 AES International Conference on Semantic Audio, 2017.
[90] S. Qiu and H. G. Feichtinger. Discrete Gabor structures and optimal representation. IEEE Trans. Signal Process., 43(10):2258-2268, October 1995.
[91] S. Qiu and H. G. Feichtinger. The structure of the Gabor matrix and efficient numerical algorithms for discrete Gabor expansion. In Proc. SPIE VCIP94, SPIE 2308, pages 1146-1157, Chicago, 1994.
[92] S. Qiu. Characterizations of Gabor-Gram matrices and efficient computations of discrete Gabor coefficients. In A. F. Laine, M. A. Unser, and V. Wickershauser, editors, Proc. SPIE Wavelet Applications in Signal and Image Processing III, volume 2569, pages 678-688, 1995.
[93] S. Qiu. Gabor-type matrix algebra and fast computations of dual and tight Gabor wavelets. Opt. Eng., 36(1):276-282, 1997.
[94] S. Qiu. Generalized dual Gabor atoms and best approximations by Gabor family. Signal Process., 49:167-186, 1996. · Zbl 0866.94005
[95] S. Qiu. Matrix approaches to discrete Gabor transform. PhD thesis, Dept. Mathematics, Univ. Vienna, June 2000.
[96] S. Qiu. Structural properties of the Gabor transform and numerical algorithms. Proc. SPIE, vol. 2491, Wavelet Applications for Dual Use, pages 980-991, 1995.
[97] S. Qiu. Super-fast computations of dual and tight Gabor atoms. In F. Laine, M. A. Unser, and V. Wickershauser, editors, Proc. SPIE Wavelet Applications in Signal and Image Processing III, volume 2569, pages 464-475, 1995.
[98] A. Ron and Z. Shen. Frames and stable bases for subspaces of \({L}^2({R}^d)\): the duality principle of Weyl-Heisenberg sets. In M. Chu, R. Plemmons, D. Brown, and D. Ellison, editors, Proceedings of the Lanczos Centenary Conference Raleigh, NC., pages 422-425. SIAM, 1993.
[99] A. Ron and Z. Shen. Weyl-Heisenberg frames and Riesz bases in \({L}_2({\mathbb{R}}^d)\). Duke Math. J., 89(2):237-282, 1997. · Zbl 0892.42017
[100] C. Schoerkhuber, A. Klapuri, N. Holighaus, and M. Dörfler. A MATLAB toolbox for efficient perfect reconstruction time-frequency transforms with log-frequency resolution. volume 53. Proceedings of the 53rd AES international conference on semantic audio. London, UK, 2014.
[101] K. Seip, and R. Wallsten. Density theorems for sampling and interpolation in the Bargmann-Fock space II. J. Reine Angew. Math., 429:107-113, 1992. · Zbl 0745.46033
[102] K. Seip. Density theorems for sampling and interpolation in the Bargmann-Fock space I. J. Reine Angew. Math., 429:91-106, 1992. · Zbl 0745.46034
[103] P. Sondergaard, B. Torrésani, and P. Balazs. The Linear Time Frequency Analysis Toolbox. International Journal of Wavelets, Multiresolution and Information Processing, 10(4):1250032, 2012. · Zbl 1270.65083
[104] T. Strohmer and S. Beaver. Optimal OFDM system design for time-frequency dispersive channels. IEEE Trans. Comm., 51(7):1111-1122, July 2003.
[105] J. Toft and P. Boggiatto. Schatten classes for Toeplitz operators with Hilbert space windows on modulation spaces. Adv. Math., 217(1):305-333, 2008. · Zbl 1131.47026
[106] L. Toth. The number of subgroups of the group \({Z}_m \times{Z}_n \times{Z}_r \times{Z}_s\). ArXiv e-prints, November 2016.
[107] T. Tschurtschenthaler. The Gabor Frame Operator (its Structure and Numerical Consequences). Master’s thesis, University of Vienna, 2000.
[108] G. A. Velasco. Time-Frequency Localization and Sampling in Gabor Analysis. PhD thesis, Universität Wien, 2015.
[109] D. G. Voelz. Computational Fourier Optics. A MATLAB Tutorial. Tutorial text. Vol. 89. SPIE, 2011.
[110] J. von Neumann. Mathematical Foundations of Quantum Mechanics., Robert T. Beyer, 1955. · Zbl 0064.21503
[111] D. F. Walnut. Continuity properties of the Gabor frame operator. J. Math. Anal. Appl., 165(2):479-504, 1992. · Zbl 0763.47014
[112] J. Wexler and S. Raz. Discrete Gabor expansions. Signal Process., 21:207-220, 1990.
[113] C. Wiesmeyr. Construction of frames by discretization of phase space. PhD thesis, Universität Wien, 2014.
[114] M. Zibulski and Y. Y. Zeevi. Analysis of multiwindow Gabor-type schemes by frame methods. Appl. Comput. Harmon. Anal., 4(2):188-221, 1997. · Zbl 0885.42024
[115] M. Zibulski and Y. Y. Zeevi. Discrete multiwindow Gabor-type transforms. IEEE Trans. Signal Process., 45(6):1428-1442, 1997. · Zbl 0888.65146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.