×

On a certain extension of the Riemann-Liouville fractional derivative operator. (English) Zbl 1426.33016

Summary: The main aim of this present paper is to present a new extension of the fractional derivative operator by using the extension of beta function recently defined by M. Shadab, S. Jabee and J. Choi [“An extension of beta function and its application”, Far East J. Math. Sci. (FJMS) 103, No. 1, 235–251 (2018)]. Moreover, we establish some results related to the newly defined modified fractional derivative operator such as Mellin transform and relations to extended hypergeometric and Appell’s function via generating functions.

MSC:

33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)
26A33 Fractional derivatives and integrals
33C05 Classical hypergeometric functions, \({}_2F_1\)
33C65 Appell, Horn and Lauricella functions

Software:

DLMF

References:

[1] D. Baleanu, P. Agarwal, R. K. Parmar, M. M. Alquarashi, and S. Salahshour, Extension of the fractional derivative operator of the Riemann-Liouville, J. Nonlinear Sci. Appl. 10 (2017), no. 6, 2914-2924. · Zbl 1412.33007 · doi:10.22436/jnsa.010.06.06
[2] M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. · Zbl 0944.33003 · doi:10.1016/S0377-0427(96)00102-1
[3] M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and con uent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589-602. · Zbl 1067.33001 · doi:10.1016/j.amc.2003.09.017
[4] J. Choi, A. K. Rathie, and R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2014), no. 2, 357-385. · Zbl 1298.33004 · doi:10.5831/HMJ.2014.36.2.357
[5] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. · Zbl 1092.45003
[6] V. Kiryakova, The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus, Computers & Mathematics with Applications 59 (2010), 1885-1895. · Zbl 1189.33034 · doi:10.1016/j.camwa.2009.08.025
[7] I. O. Kiymaz, A. Cetinkaya, and P. Agarwal, An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3611-3621. · Zbl 1345.26014 · doi:10.22436/jnsa.009.06.14
[8] M.-J. Luo, G. V. Milovanovic, and P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput. 248 (2014), 631-651. · Zbl 1338.33006
[9] K. Mehrez and Z. Tomovski, On a new (p,q)-Mathieu type power series and its applications, to appear in Appl. Anal. Discr. Math. Vol 13 (2019). · Zbl 1499.31010
[10] S. Mubeen, G. Rahman, K. S. Nisar, J. Choi, and M. Arshad, An extended beta function and its properties, Far East J. Math. Sci. 102 (2017), 1545-1557.
[11] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, 2010. · Zbl 1198.00002
[12] M. A. Ozerslan and E. Ozergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling 52 (2010), no. 9-10, 1825-1833. · Zbl 1205.33021 · doi:10.1016/j.mcm.2010.07.011
[13] M. A. Ozerslan and E. Ozergin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601-4610. · Zbl 1218.33002 · doi:10.1016/j.cam.2010.04.019
[14] R. K. Parmar, Some generating relations for generalized extended hypergeometric functions involving generalized fractional derivative operator, J. Concr. Appl. Math. 12 (2014), no. 3-4, 217-228. · Zbl 1325.26025
[15] T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7-15. · Zbl 0221.45003
[16] G. Rahman, S. Mubeen, K. S. Nisar, and J. Choi, Extended special functions and fractional integral operator via an extended Beta function, Submitted. · Zbl 1426.26020
[17] E. D. Rainville, Elementary Differential Equations, The Macmillan Company, New York, 1958. · Zbl 0084.07602
[18] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993. · Zbl 0818.26003
[19] M. Shadab, S. Jabee, and J. Choi, An extension of beta function and its application, Far East J. Math. Sci. 103 (2018), no. 1, 235-251.
[20] S. C. Sharma and M. Devi, Certain properties of extended Wright generalized hypergeometric function, Annals of Pure and Appl. Math. 9 (2015), no. 1, 45-51.
[21] H. M. Srivastava, R. K. Parmar, and P. Chopra, A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms 1 (2012), 238-258. · Zbl 1298.26027 · doi:10.3390/axioms1030238
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.