×

Determining Hilbert modular forms by central values of Rankin-Selberg convolutions: the weight aspect. (English) Zbl 1426.11049

Summary: The purpose of this paper is to prove that a primitive Hilbert cusp form \(\mathbf{g}\) is uniquely determined by the central values of the Rankin-Selberg \(L\)-functions \(L(\mathbf{f}\otimes \mathbf{g}, \frac{1}{2})\), where \(\mathbf{f}\) runs through all primitive Hilbert cusp forms of weight \(k\) for infinitely many weight vectors \(k\). This result is a generalization of the work of S. Ganguly et al. [Math. Ann. 345, No. 4, 843–857 (2009; Zbl 1234.11065)] to the setting of totally real number fields, and it is a weight aspect analogue of our previous work [Trans. Am. Math. Soc. 369, No. 12, 8781–8797 (2017; Zbl 1426.11048)].

MSC:

11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F30 Fourier coefficients of automorphic forms
11F11 Holomorphic modular forms of integral weight
11F12 Automorphic forms, one variable
11N75 Applications of automorphic functions and forms to multiplicative problems

References:

[1] Blasius, D.; Consani, C. (ed.); Marcolli, M. (ed.), Hilbert modular forms and the Ramanujan conjecture, No. E37, 35-56 (2006), Wiesbaden · Zbl 1183.11023 · doi:10.1007/978-3-8348-0352-8_2
[2] Bump, D.: Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997) · Zbl 0868.11022 · doi:10.1017/CBO9780511609572
[3] Ganguly, S., Hoffstein, J., Sengupta, J.: Determining modular forms on \[{{\text{ SL }}}_2({\mathbb{Z}})\] SL2(Z) by central values of convolution \[L\] L-functions. Math. Ann. 345, 843-857 (2009) · Zbl 1234.11065 · doi:10.1007/s00208-009-0380-2
[4] Garrett, P.: Holomorphic Hilbert Modular Forms, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1990) · Zbl 0685.10021
[5] Goldfeld, D.: Analytic and arithmetic theory of Poincaré series. In: Journées Arithmétiques de Luminy: Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978. Astérisque, vol. 61, pp. 95-107. Société Mathématique de France, Paris (1979) · Zbl 0401.10034
[6] Hamieh, A., Tanabe, N.: Determining Hilbert modular forms by central values of Rankin-Selberg convolutions: the level aspect. Trans. Am. Math. Soc. (2016). arXiv:1609.07209 · Zbl 1426.11048
[7] Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004) · Zbl 1059.11001
[8] Li, J.: Determination of a \[{\text{ GL }}_2\] GL2 automorphic cuspidal representation by twists of critical \[L\] L-values. J. Number Theory 123, 255-289 (2007) · Zbl 1173.11030 · doi:10.1016/j.jnt.2006.07.014
[9] Luo, W.: Special \[L\] L-values of Rankin-Selberg convolutions. Math. Ann. 314, 591-600 (1999) · Zbl 0932.11033 · doi:10.1007/s002080050308
[10] Luo, W.: Poincaré series and Hilbert modular forms. Ramanujan J. 7, 129-140 (2003) · Zbl 1067.11023 · doi:10.1023/A:1026286826783
[11] Luo, W., Ramakrishnan, D.: Determination of modular forms by twists of critical \[L\] L-values. Invent. Math. 130, 371-398 (1997) · Zbl 0905.11024 · doi:10.1007/s002220050189
[12] Miyake, T.: On automorphic forms on \[{\text{ GL }}_2\] GL2 and Hecke operators. Ann. Math. (2) 94, 174-189 (1971) · Zbl 0204.54201
[13] Pi, Q.H.: Determination of cusp forms by central values of Rankin-Selberg \[L\] L-functions. J. Number Theory 130, 2283-2292 (2010) · Zbl 1264.11041 · doi:10.1016/j.jnt.2010.06.002
[14] Prasad, D., Ramakrishnan, D.: On the global root numbers of \[{\text{ GL }}(n) \times{\text{ GL }}(m)\] GL(n)×GL(m). Proc. Symp. Pure Maths AMS 66, 311-330 (1999) · Zbl 0991.11025 · doi:10.1090/pspum/066.2/1703765
[15] Raghuram, A., Tanabe, N.: Notes on the arithmetic of Hilbert modular forms. J. Ramanujan Math. Soc. 26, 261-319 (2011) · Zbl 1272.11069
[16] Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J. 45, 637-679 (1978) · Zbl 0394.10015 · doi:10.1215/S0012-7094-78-04529-5
[17] Stark, H.M.: On the determination of an \[L\] L-function from one value. In: Analytic Number Theory, vol. 2 (Allerton Park, IL, 1995). Progress in Mathematics, vol. 139, pp. 737-743. Birkhäuser Boston, Boston (1996) · Zbl 0870.11036
[18] Trotabas, D.: Non annulation des fonctions \[L\] L des formes modulaires de Hilbert au point central. Ann. Inst. Fourier (Grenoble) 61, 187-259 (2011) · Zbl 1285.11074
[19] Zhang, Y.: Determining modular forms of general level by central values of convolution \[L\] L-functions. Acta Arith. 150, 93-103 (2011) · Zbl 1247.11055 · doi:10.4064/aa150-1-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.