×

Inter-phase interaction in a turbulent, vertical channel flow laden with heavy particles. I: Numerical methods and particle dispersion properties. (English) Zbl 1425.76109

Summary: We investigated the interaction between two phases by numerical simulation of a turbulent channel flow laden with heavy particles. We calculated the fluid phase turbulence by a large eddy simulation with a point-force two-way coupling model and tracked particles by the Lagrangian trajectory method. Six cases with different particle volume concentrations for three kinds of particles were simulated. The particle dispersion properties on the inter-phase interaction were presented in this first part. The simulations provided comprehensive instantaneous two-phase turbulent flow fields. The particle streaky and cloudy preferential distributions, which weaken with increased particle inertia, are suppressed by particle modulation of turbulence. Modulation of turbulence is stronger near the wall than in other regions, because particle volume concentration is higher close to the wall and modulation increases with local particle concentration. The streaky particle distribution structures near the wall disappear earlier than the outer layer cloudy structures as the particle mass loading increases. Particle-phase instantaneous velocity scatter distributions, characterized by a Y-shape changing to a \(\Lambda \)-shape from the viscous sub-layer to the central plane, are altered by particle modulation of turbulence.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI

References:

[1] Crowe, C. T.; Gore, R. A.; Troutt, T. R.: Particle dispersion by coherent structures in free shear flows, Partic. sci. Technol. J. 3, 149-158 (1985)
[2] Crowe, C. T.; Sommerfeld, M.; Tsuji, T.: Multiphase flows with droplets and particles, (1998)
[3] Crowe, C. T.: Multiphase flow handbook, (2006) · Zbl 1098.76001
[4] Fessler, J. R.; Kulick, J. D.; Eaton, J. K.: Preferential concentration of heavy particles in a turbulent channel flow, Phys. fluids 6, 3742-3749 (1994)
[5] Elghobashi, S. E.: On predicting particle-laden turbulent flows, J. appl. Sci. res. 52, 309-329 (1994)
[6] Elghobashi, S. E.: An updated classification map of particle-laden turbulent flows, IUTAM symposium on computational approaches to multiphase flow (2006)
[7] Yamamoto, Y.; Potthoff, M.; Tanaka, T.; Kajishima, T.; Tsuji, Y.: Large eddy simulation of turbulent gas – solid flow in a vertical channel: effect of considering inter-particle collisions, J. fluid mech. 442, 303-334 (2001) · Zbl 1004.76513 · doi:10.1017/S0022112001005092
[8] Squires, K. D.; Eaton, J. K.: Particle response and turbulence modification in isotropic turbulence, Phys. fluids A 2, 1191-1203 (1990)
[9] Elghobashi, S. E.; Truesdell, G. C.: Direct simulation of particle dispersion in a decaying isotropic turbulence, J. fluid mech. 242, 655-700 (1992)
[10] Elghobashi, S. E.; Truesdell, G. C.: On the two-way interaction between homogeneous turbulence and dispersed solid particles I: Turbulence modification, Phys. fluids A 5, 1790-1801 (1993) · Zbl 0782.76087 · doi:10.1063/1.858854
[11] A. Ferrante, S.E. Elghobashi, On the effects of finite-size particles on decaying isotropic turbulence, in: CD-Rom, Proceeding of 6th International Conference on Multiphase Flow, Leipzig, Germany, 2007. · Zbl 1146.76382
[12] Yuu, S.; Ueno, T.; Umekage, T.: Numerical simulation of the high Reynolds number slit nozzle gas – particle jet using subgrid-scale coupling large eddy simulation, Chem. eng. Sci. 56, 4293-4307 (2001)
[13] Wang, B.; Zhang, H. Q.; Chan, C. K.; Wang, X. L.: Velocity fluctuations in a particle-laden turbulent flow over a backward-facing step, Comput. mater. Continua 1, 275-288 (2004) · Zbl 1181.76090
[14] Wang, B.; Zhang, H. Q.; Wang, X. L.: Large eddy simulation of particle response to turbulence along its trajectory in a backward-facing step turbulent flow, Int. J. Heat mass transfer 49, 415-420 (2006) · Zbl 1189.76322 · doi:10.1016/j.ijheatmasstransfer.2005.05.042
[15] Wang, Q.; Squires, K. D.: Large eddy simulation of particle-laden turbulent channel flow, Phys. fluids 8, 1207-1223 (1996) · Zbl 1086.76032 · doi:10.1063/1.868911
[16] Kulick, J. D.; Fessler, J. R.; Eaton, J. K.: Particle response and turbulence modification in fully developed channel flow, J. fluid mech. 277, 109-134 (1994)
[17] D.W.I. Rouson, J.K. Eaton, Direct numerical simulation of turbulent channel flow with immersed particles, in: Third Intl. Symposium on Numerical Methods in Multiphase Flow, ASME FED-vol. 185, 1994, pp. 47 – 57.
[18] D.W.I. Rouson, J.K. Eaton, Direct numerical simulation of particles interacting with a turbulent channel flow, in: M. Sommerfeld (Ed.), Proceedings of the 7th Workshop on Two-Phase Flow Predictions, Erlangen, Germany, 1994.
[19] K. Fukagata, Numerical analyses on dispersed gas – particle two-phase turbulent flows, Doctor thesis, 2000.
[20] Fukagata, K.; Zahrai, S.; Kondo, S.; Bark, F. H.: Anomalous velocity fluctuations in particulate turbulent channel flow, Int. J. Multiphase flow 27, 701-719 (2001) · Zbl 1137.76585 · doi:10.1016/S0301-9322(00)00049-5
[21] N. Konan, A. Badarayani, O. Simonin, K.D. Squires, LES/DPS of horizontal gas – solid channel flow with particle – particle collision and wall roughness effects, in: CD-Rom, Proceeding of 6th International Conference on Multiphase flow, Leipzig, Germany, 2007.
[22] Pendinotti, S.; Mariotti, G.; Banerjee, S.: Direct numerical simulation of particle behavior in the wall region of turbulent flows in horizontal channels, Int. J. Multiphase flow 18, 927-941 (1992) · Zbl 1144.76440 · doi:10.1016/0301-9322(92)90068-R
[23] Rouson, D. W. I.; Eaton, J. K.: On the preferential concentration of solid particles in turbulent channel flow, J. fluid mech. 428, 149-169 (2001) · Zbl 0967.76039 · doi:10.1017/S0022112000002627
[24] Pan, Y.; Banerjee, S.: Numerical simulation of particle interaction with wall turbulence, Phys. fluids 8, 2733-2755 (1996)
[25] Pan, Y.; Banerjee, S.: Numerical investigation of the effects of large particles on wall-turbulence, Phys. fluids 9, 3786-3807 (1997)
[26] C.D. Dritselis, N.S. Vlachos, Numerical study of educed coherent structures in the near wall region of particle-laden channel flow, in: CD-Rom, Proceeding of 6th International Conference on Multiphase Flow, Leipzig, Germany, 2007. · Zbl 1182.76218
[27] Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows, J. comp. Phys. 209, 448-476 (2005) · Zbl 1138.76398 · doi:10.1016/j.jcp.2005.03.017
[28] M. Uhlmann, Experience with DNS of particulate flow using a variant of the immersed boundary method, in: P. Wesseling, E. Onate, J. Periaux (Eds.), Proceedings of the ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, TU Delft, 2006.
[29] M. Uhlmann, Investigating turbulent particulate channel flow with interface-resolved DNS, in: CD-Rom, Proceeding of 6th International Conference on Multiphase Flow, Leipzig, Germany, 2007.
[30] Gore, R. A.; Crowe, C. T.: Modulation of turbulence by a dispersed phase, Trans. ASME J. Fluids eng. 113, 304-307 (1991)
[31] A.D. Paris, J.K. Eaton, Turbulence attenuation in a particle laden channel flow, Mech. Eng. Dept., Stanford Univ. Rep., 2001.
[32] Sommerfeld, M.; Huber, N.: Experimental analysis and modeling of particle-wall collisions, Int. J. Multiphase flow 25, 1457-1489 (1999) · Zbl 1137.76743 · doi:10.1016/S0301-9322(99)00047-6
[33] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.: A dynamic subgrid-scale eddy viscosity model, Phys. fluids A 3, 1760-1765 (1991) · Zbl 0825.76334 · doi:10.1063/1.857955
[34] Maxey, M. R.; Riley, J. J.: Equation of motion for a small rigid sphere in a nonuniform flow, Phys. fluids 26, 883-889 (1983) · Zbl 0538.76031 · doi:10.1063/1.864230
[35] Schiller, L.; Nauman, A.: A drag coefficient correlation, Z. ver. Dtsh. ing. 77, 318-320 (1933)
[36] Wang, Q.; Squires, K. D.; Wu, X.: Lagrangian statistics in turbulent channel flow, Atmospheric environ. 29, 2417-2427 (1995)
[37] Picciotto, M.; Marchioli, C.; Reeks, M. W.; Soldati, A.: Statistics of velocity and preferential accumulation of micro-particles in boundary layer turbulence, Nucl. eng. Des. 235, 1239-1249 (2005)
[38] Crowe, C. T.: On models for turbulence modulation in fluid – particle flows, Int. J. Multiphase flow 26, 719-727 (2000) · Zbl 1137.76554 · doi:10.1016/S0301-9322(99)00050-6
[39] Crowe, C. T.; Stock, D. E.; Sharma, M. P.: The particle-source-in cell PSI-CELL model for gas-droplet flows, ASME, trans. Ser. I – J. Fluids eng. 99, 325-332 (1977)
[40] S. Yuu, Effects of particle existences on low and high Reynolds number gas – particle jets, in: ISAC ’97 High Performance Computing on Multiphase Flows, 1997, pp. 67 – 73.
[41] Lei, K.; Taniguchi, N.; Kobayashi, T.: Large eddy simulation of particle-laden turbulent channel flow considering SGS coupling, JSME int. J. B 45, 164-173 (2002)
[42] Squires, K. D.; Eaton, J. K.: Preferential concentration of particles by turbulence, Phys. fluids A 3, 1169-1178 (1991)
[43] Wang, B.: Inter-phase interaction in a turbulent, vertical channel flow laden with heavy particles. Part II: Two-phase velocity statistical properties, Int. J. Heat mass transfer 53, 2522-2529 (2010) · Zbl 1425.76093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.