×

An adaptive octree finite element method for PDEs posed on surfaces. (English) Zbl 1425.65155

Summary: The paper develops a finite element method for partial differential equations posed on hypersurfaces in \(\mathbb{R}^N, N = 2, 3\). The method uses traces of bulk finite element functions on a surface embedded in a volumetric domain. The bulk finite element space is defined on an octree grid which is locally refined or coarsened depending on error indicators and estimated values of the surface curvatures. The cartesian structure of the bulk mesh leads to easy and efficient adaptation process, while the trace finite element method makes fitting the mesh to the surface unnecessary. The number of degrees of freedom involved in computations is consistent with the two-dimension nature of surface PDEs. No parametrization of the surface is required; it can be given implicitly by a level set function. In practice, a variant of the marching cubes method is used to recover the surface with the second order accuracy. We prove the optimal order of accuracy for the trace finite element method in \(H^1\) and \(L^2\) surface norms for a problem with smooth solution and quasi-uniform mesh refinement. Experiments with less regular problems demonstrate optimal convergence with respect to the number of degrees of freedom, if grid adaptation is based on an appropriate error indicator. The paper shows results of numerical experiments for a variety of geometries and problems, including advection-diffusion equations on surfaces. Analysis and numerical results of the paper suggest that combination of cartesian adaptive meshes and the unfitted (trace) finite elements provide simple, efficient, and reliable tool for numerical treatment of PDEs posed on surfaces.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35R01 PDEs on manifolds

Software:

Gerris; deal.ii

References:

[1] Mullins, W. W., Mass transport at interfaces in single component system, Metall. Mater. Trans., 26, 1917-1925 (1995)
[2] Elliott, C. M.; Stinner, B., Modeling and computation of two phase geometric biomembranes using surface finite elements, J. Comput. Phys., 229, 6585-6612 (2010) · Zbl 1425.74323
[3] Gross, S.; Reusken, A., Numerical Methods for Two-phase Incompressible Flows, vol. 40 (2011), Springer-Verlag · Zbl 1222.76002
[4] Diewald, U.; Preufer, T.; Rumpf, M., Anisotropic diffusion in vector field visualization on Euclidean domains and surfaces, IEEE Trans. Vis. Comput. Graph., 6, 139-149 (2000)
[5] Turk, G., Generating textures on arbitrary surfaces using reaction-diffusion, Comput. Graph., 25, 289-298 (1991)
[6] Toga, A., Brain Warping (1998), Academic Press: Academic Press New York
[7] Halpern, D.; Jensen, O.; Grotberg, J., A theoretical study of surfactant and liquid delivery into the lung, J. Appl. Physiol., 85, 333-352 (1998)
[8] Dziuk, G., Finite elements for the Beltrami operator on arbitrary surfaces, (Hildebrandt, S.; Leis, R., Partial Differential Equations and Calculus of Variations. Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics, vol. 1357 (1988), Springer: Springer Berlin), 142-155 · Zbl 0663.65114
[9] Bertalmio, M.; Cheng, L.; Osher, S.; Sapiro, G., Variational problems and partial differential equations on implicit surfaces: The framework and examples in image processing and pattern formation, J. Comput. Phys., 174, 759-780 (2001) · Zbl 0991.65055
[12] Dziuk, G.; Elliott, C. M., Finite element methods for surface PDEs, Acta Numer., 289-396 (2013) · Zbl 1296.65156
[13] Olshanskii, M.; Reusken, A.; Grande, J., A finite element method for elliptic equations on surfaces, SIAM J. Numer. Anal., 47, 3339-3358 (2009) · Zbl 1204.58019
[14] Olshanskii, M.; Reusken, A., A finite element method for surface PDEs: Matrix properties, Numer. Math., 114, 491-520 (2010) · Zbl 1204.65136
[15] Bonito, A.; Nochetto, R.; Pauletti, M., Dynamics of biomembranes: effect of the bulk fluid, Math. Model. Nat. Phenom., 6, 25-43 (2011) · Zbl 1231.92014
[16] Elliott, C. M.; Ranner, T., Finite element analysis for coupled bulk-surface partial differential equation, IMA J. Numer. Anal., 33, 377-402 (2013) · Zbl 1271.65138
[17] Grande, J., Eulerian finite element methods for parabolic equations on moving surfaces, SIAM J. Sci. Comput., 36, 248-271 (2014) · Zbl 1296.65131
[18] Hansbo, P.; Larson, M. G.; Zahedi, S., Characteristic Cut Finite Element Methods for Convection-Diffusion Problems on Time Dependent Surfaces, Tech. Rep. (2013), Uppsala University, April
[19] Olshanskii, M.; Reusken, A.; Xu, X., An eulerian space-time finite element method for diffusion problems on evolving surfaces, SIAM J. Numer. Anal., 52, 1354-1377 (2014) · Zbl 1320.76072
[20] Olshanskii, M.; Reusken, A., Error analysis of a space-time finite element method for solving PDEs on evolving surfaces, SIAM J. Numer. Anal., 52, 2092-2120 (2014) · Zbl 1307.65120
[23] Olshanskii, M.; Reusken, A.; Xu, X., A stabilized finite element method for advection-diffusion equations on surfaces, IMA J Numer. Anal., 34, 732-758 (2014) · Zbl 1293.65159
[25] Demlow, A.; Olshanskii, M., An adaptive surface finite element method based on volume meshes, SIAM J. Numer. Anal., 50, 1624-1647 (2012) · Zbl 1248.65122
[26] Burman, E.; Hansbo, P.; Larson, M. G., A stabilized cut finite element method for partial differential equations on surfaces: The Laplace-Beltrami operator, Comput. Methods Appl. Mech. Engrg., 285, 188-207 (2015) · Zbl 1425.65152
[27] Losasso, F.; Gibou, F.; Fedkiw, R., Simulating water and smoke with an octree data structure, ACM Trans. Graph. (TOG), 23, 3, 495-514 (2004)
[28] Meagher, D., Geometric modeling using octree encoding, Comput. Graph. Image Process., 19, 129-147 (1982)
[29] Szeliski, R., Rapid octree construction from image sequences, CVGIP: Image Underst., 58, 23-32 (1993)
[30] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 5838-5866 (2009) · Zbl 1280.76020
[31] Strain, J., Tree methods for moving interfaces, J. Comput. Phys., 151, 616-648 (1999) · Zbl 0942.76061
[32] Nikitin, K. D.; Olshanskii, M. A.; Terekhov, K. M.; Vassilevski, Y. V., A numerical method for the simulation of free surface flows of viscoplastic fluid in 3D, J. Comput. Math., 29, 605-622 (2011) · Zbl 1265.76025
[34] Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190, 572-600 (2003) · Zbl 1076.76002
[35] Lorensen, W.; Cline, H., Marching cubes: A high resolution 3d surface construction algorithm, ACM SIGGRAPH, 21, 4, 189-207 (1987)
[36] Aubin, T., Nonlinear Analysis on Manifolds, Monge-Ampere Equations, Vol. 252 (1982), Springer · Zbl 0512.53044
[38] Demlow, A.; Dziuk, G., An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal., 45, 421-442 (2007) · Zbl 1160.65058
[39] Hansbo, A.; Hansbo, P.; Larson, M. G., A finite element method on composite grids based on Nitsche’s method, ESAIM Math. Model. Numer. Anal., 37, 495-514 (2003) · Zbl 1031.65128
[40] Heuveline, V.; Schieweck, F., H1-interpolation on quadrilateral and hexahedral meshes with hanging nodes, Computing, 80, 3, 203-220 (2007) · Zbl 1133.65100
[41] Verfürth, R., A posteriori error estimators for convection-diffusion equations, Numer. Math., 80, 4, 641-663 (1998) · Zbl 0913.65095
[42] Shishkin, G., Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations, Tech. Rep., vol. 269 (1992), Russian Academy of Sciences, Ural Section: Russian Academy of Sciences, Ural Section Ekaterinburg · Zbl 1397.65005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.