×

Generalized stability for discontinuous complex-valued Hopfield neural networks via differential inclusions. (English) Zbl 1425.34073

Summary: Some dynamical behaviours of discontinuous complex-valued Hopfield neural networks are discussed in this paper. First, we introduce a method to construct the complex-valued set-valued mapping and define some basic definitions for discontinuous complex-valued differential equations. In addition, Leray-Schauder alternative theorem is used to analyse the equilibrium existence of the networks. Lastly, we present the dynamical behaviours, including global stability and convergence in measure for discontinuous complex-valued neural networks (CVNNs) via differential inclusions. The main contribution of this paper is that we extend previous studies on continuous CVNNs to discontinuous ones. Several simulations are given to substantiate the correction of the proposed results.

MSC:

34D23 Global stability of solutions to ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Arnoldi J, Haegeman B. (2016) Unifying dynamical and structural stability of equilibria. Proc. R. Soc. A 472, 20150874. (doi:10.1098/rspa.2015.0874) · Zbl 1371.37045 · doi:10.1098/rspa.2015.0874
[2] Huang C, Yang Z, Yi T, Zou X. (2014) On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256, 2101-2114. (doi:10.1016/j.jde.2013.12.015) · Zbl 1297.34084 · doi:10.1016/j.jde.2013.12.015
[3] Hopfield J. (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci. USA 81, 3088-3092. (doi:10.1073/pnas.81.10.3088) · Zbl 1371.92015 · doi:10.1073/pnas.81.10.3088
[4] Song R, Xiao W, Zhang H, Sun C. (2014) Adaptive dynamic programming for a class of complex-valued nonlinear systems. IEEE Trans. Neural Networks Learn. Syst. 20, 1733-1739. (doi:10.1109/TNNLS.2014.2306201) · Zbl 1313.94017 · doi:10.1109/TNNLS.2014.2306201
[5] Lushnikov P, Dyachenko S, Silantyev D. (2017) New conformal mapping for adaptive resolving of the complex singularities of Stokes wave. Proc. R. Soc. A 473, 20170198. (doi:10.1098/rspa.2017.0198) · Zbl 1402.76027 · doi:10.1098/rspa.2017.0198
[6] Tanaka G, Aihara K. (2009) Complex-valued multistate associative memory with nonlinear multilevel functions for gray-level image reconstruction. IEEE Trans. Neural Netw. 20, 1463-1473. (doi:10.1109/TNN.2009.2025500) · doi:10.1109/TNN.2009.2025500
[7] Hirose A. (2012) Complex-valued neural networks, 2nd edn. Berlin, Germany: Springer. · Zbl 1235.68016
[8] Rudin W. (1987) Real and complex analysis. New York, NY: McGraw-Hill Press. · Zbl 0925.00005
[9] Hu J, Wang J. (2012) Global stability of complex-valued recurrent neural networks with time-delays. IEEE Trans. Neural Networks Learn. Syst. 23, 853-865. (doi:10.1109/TNNLS.2012.2195028) · doi:10.1109/TNNLS.2012.2195028
[10] Zhang Z, Lin C, Chen B. (2014) Global stability criterion for delayed complex-valued recurrent neural networks. IEEE Trans. Neural Networks Learn. Syst. 25, 1704-1708. (doi:10.1109/TNNLS.2013.2288943) · doi:10.1109/TNNLS.2013.2288943
[11] Fang T, Sun J. (2014) Further investigation on the stability of complex-valued recurrent neural networks with time delays. IEEE Trans. Neural Networks Learn. Syst. 25, 1709-1713. (doi:10.1109/TNNLS.2013.2294638) · doi:10.1109/TNNLS.2013.2294638
[12] Velmurugan G, Rakkiyappan R, Cao J. (2015) Further analysis of global μ-stability of complex-valued neural networks with unbounded timie-varying delays. Neural Netw. 67, 14-27. (doi:10.1016/j.neunet.2015.03.007) · Zbl 1398.34103 · doi:10.1016/j.neunet.2015.03.007
[13] Gong W, Liang J, Cao J. (2015) Matrix measure method for global exponential stability of complex-valued recurrent neural networks with time-varying delays. Neural Netw. 70, 81-89. (doi:10.1016/j.neunet.2015.07.003) · Zbl 1398.34097 · doi:10.1016/j.neunet.2015.07.003
[14] Wang Z, Liu X. (2019) Exponential stability of impulsive complex-valued neural net- works with time delay. Math. Comput. Simul. 156, 143-157. doi:10.1016/j.matcom.2018.07.006) · Zbl 1540.34141 · doi:10.1016/j.matcom.2018.07.006
[15] Pan J, Liu X. (2015) Global exponential stability for complex-valued recurrent neural networks with asynchronous time delays. Neurocomputing 164, 293-299. (doi:10.1016/j.neucom.2015.02.024) · doi:10.1016/j.neucom.2015.02.024
[16] Kobayashi M. (2017) Symmetric complex-valued Hopfield neural networks. IEEE Trans. Neural Networks Learn. Syst. 28, 1011-1015. (doi:10.1109/TNNLS.2016.2518672) · doi:10.1109/TNNLS.2016.2518672
[17] Wang M, Duan S, Huang T. (2017) Exponential stability of complex-valued memristive recurrent neural networks. IEEE Trans. Neural Networks Learn. Syst. 28, 766-771. (doi:10.1109/TNNLS.2015.2513001) · doi:10.1109/TNNLS.2015.2513001
[18] Kaslik E, Rădulescu I. (2017) Dynamics of complex-valued fractional-order neural networks. Neural Netw. 89, 39-49. (doi:10.1016/j.neunet.2017.02.011) · Zbl 1447.34051 · doi:10.1016/j.neunet.2017.02.011
[19] Tank D, Hopfield J. (1986) Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circ. Syst. I: Regul. Pap. 33, 533-541. (doi:10.1109/TCS.1986.1085953) · doi:10.1109/TCS.1986.1085953
[20] Forti M, Nistri P. (2003) Global convergence of neural networks with discontinuous neuron activations. IEEE Trans. Circuits Syst. I Regul. Pap. 50, 1421-1435. (doi:10.1109/TCSI.2003.818614) · Zbl 1368.34024 · doi:10.1109/TCSI.2003.818614
[21] Guo Z, Huang L. (2009) Generalized Lyapunov method for discontinuous systems. Nonlinear Anal. Theory Methods Appl. 71, 3083-3092. (doi:10.1016/j.na.2009.01.220) · Zbl 1182.34008 · doi:10.1016/j.na.2009.01.220
[22] Forti M. (2007) M-matrices and global convergence of discontinuous neural networks. Int. J. Circuit Theory Appl. 35, 105-130. (doi:10.1002/cta.381) · Zbl 1131.92004 · doi:10.1002/cta.381
[23] Guo Z, Huang L. (2009) LMI conditions for global robust stability of delayed neural networks with discontinuous neuron activations. Appl. Math. Comput. 215, 889-900. (doi:10.1016/j.amc.2009.06.013) · Zbl 1187.34098 · doi:10.1016/j.amc.2009.06.013
[24] Liu X, Ping T, Cao J, Lu W. (2011) Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches. Neural Netw. 24, 1013-1021. (doi:10.1016/j.neunet.2011.06.005) · Zbl 1264.93048 · doi:10.1016/j.neunet.2011.06.005
[25] Yang X, Cao J. (2013) Exponential synchronization of delayed neural networks with discontinuous activations. IEEE Trans. Circuits Syst I: Regul. Pap. 60, 2431-2439. (doi:10.1109/TCSI.2013.2244451) · Zbl 1468.92017 · doi:10.1109/TCSI.2013.2244451
[26] Wang D, Huang L, Cai Z. (2013) On the periodic dynamics of a general Cohen-Grossberg BAM neural networks via differential inclusions. Neurocomputing 118, 203-214. (doi:10.1016/j.neucom.2013.02.030) · doi:10.1016/j.neucom.2013.02.030
[27] Wang D, Huang L, Tang L. (2018) Dissipativity and synchronization for generalized BAM neural networks with multivariate discontinuous activations. IEEE Trans. Neural Netwrok Learn. Syst. 29, 3815-3827. (doi:10.1109/TNNLS.2017.2741349) · doi:10.1109/TNNLS.2017.2741349
[28] Ding X, Cao J, Zhao X, Alsaadi F. (2017) Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes. Proc. R. Soc. A 473, 20170322. (doi:10.1098/rspa.2017.0322) · Zbl 1404.92013 · doi:10.1098/rspa.2017.0322
[29] Huang Y, Zhang H, Wng Z. (2014) Multistability of complex-valued recurrent neural networks with real-imaginary-type activation functions. Appl. Math. Comput. 229, 187-200. (doi:10.1016/j.amc.2013.12.027) · Zbl 1364.92003 · doi:10.1016/j.amc.2013.12.027
[30] Rakkiyappan R, Cao J, Velmurugan G. (2015) Multiple μ-stability analysis of complex-valued neural networks with unbounded time-varying delays. Neurocomputing 149, 594-607. (doi:10.1016/j.neucom.2014.08.015) · Zbl 1398.34103 · doi:10.1016/j.neucom.2014.08.015
[31] Li X, Rakkiyappan R, Velmurugan G. (2015) Dissipativity analysis of memristor based complex-valued neural networks with time-varying delays. Inform. Sci. 294, 645-665. (doi:10.1016/j.ins.2014.07.042) · Zbl 1360.93638 · doi:10.1016/j.ins.2014.07.042
[32] Filippov A. (1988) Differential equations with discontinuous right-hand sides. Boston, MA: Kluwer Academic Press. · Zbl 0664.34001
[33] Wang Z, Guo Z, Huang L, Liu X. (2017) Dynamical behavior of complex-valued Hopfield neural networks with discontinuous activation functions. Neural Process. Lett. 45, 1039-1061. (doi:10.1007/s11063-016-9563-5) · doi:10.1007/s11063-016-9563-5
[34] Paden B, Sastry S. (1997) A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators. IEEE Trans. Circuits Syst. I: Regul. Pap. 34, 73-81. (doi:10.1109/TCS.1987.1086038) · Zbl 0632.34005 · doi:10.1109/TCS.1987.1086038
[35] Rakkiyappan R, Udhayakumar K, Velmurugan G, Cao J, Alsaedi A. (2017) Stability and Hopf bifurcation analysis of fractional-order complex-valued neural networks with time delays. Adv. Difference Equns 2017, art. no. 225. (doi:10.1186/s13662-017-1266-3) · Zbl 1422.92008 · doi:10.1186/s13662-017-1266-3
[36] Miller R, Michel A. (1982) Ordinary differential equations. Orlando, FL: Academic Press. · Zbl 0552.34001
[37] Huang Y, Zhang H, Wang Z. (2012) Multistability and multiperiodicity of delayed bidirectional associative memory neural networks with discontinuous activation functions. Appl. Math. Comput. 219, 899-910. (doi:10.1016/j.amc.2012.06.068) · Zbl 1291.34115 · doi:10.1016/j.amc.2012.06.068
[38] Wu H, Shan C. (2009) Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses. Appl. Math. Model. 33, 2564-2574. (doi:10.1016/j.apm.2008.07.022) · Zbl 1205.34017 · doi:10.1016/j.apm.2008.07.022
[39] Anbuvithya R, Mathiyalagan K, Sakthivel R, Prakash P. (2015) Non-fragile synchronization of memristive BAM networks with random feedback gain fluctuations. Commun. Nonlinear Sci. Numer. Simul. 29, 427-440. (doi:10.1016/j.cnsns.2015.05.020) · Zbl 1516.93252 · doi:10.1016/j.cnsns.2015.05.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.