×

Instantaneously complete Chern-Ricci flow and Kähler-Einstein metrics. (English) Zbl 1425.32022

Summary: In this work, we obtain some existence results of Chern-Ricci Flows and the corresponding Potential Flows on complex manifolds with possibly incomplete initial data. We discuss the behaviour of the solution as \(t\rightarrow 0\). These results can be viewed as a generalization of an existence result of Ricci flow by Giesen and Topping for surfaces of hyperbolic type to higher dimensions in certain sense. On the other hand, we also discuss the long time behaviour of the solution and obtain some sufficient conditions for the existence of Kähler-Einstein metric on complete non-compact Hermitian manifolds, which generalizes the work of Lott-Zhang and Tosatti-Weinkove to complete non-compact Hermitian manifolds with possibly unbounded curvature.

MSC:

32Q15 Kähler manifolds
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)

References:

[1] Aubin, T.: Équations du type Monge-Ampère sur les variét��s kähleriennes compactes. C. R. Acad. Sci. Paris Sér. A-B, 283(3), A119-A121 (1976) · Zbl 0333.53040
[2] Boucksom, S., Guedj, V.: Regularizing properties of the Kähler-Ricci flow. In: An Introduction to the Kähler-Ricci Flow. Lecture Notes in Mathematics, vol. 2086, pp. 189-237. Springer, Cham (2013) · Zbl 1283.53061
[3] Cao, H.-D.: Deforming of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359-372 (1985) · Zbl 0574.53042 · doi:10.1007/BF01389058
[4] Chau, A.: Convergence of the Kähler-Ricci flow on noncompact Kähler manifolds. J. Differ. Geom. 66(1), 211-232 (2004) · Zbl 1082.53070 · doi:10.4310/jdg/1102538610
[5] Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82(2), 363-382 (2009) · Zbl 1177.53036 · doi:10.4310/jdg/1246888488
[6] Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler Metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33(4), 507-544 (1980) · Zbl 0506.53031 · doi:10.1002/cpa.3160330404
[7] Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications: Part II: Analytic Aspects, Mathematical Surveys and Monographs, 144. American Mathematical Society, Providence (2008) · Zbl 1157.53035
[8] Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications, Part III. Geometric-Analytic Aspects. Mathematical Surveys and Monographs, vol. 163. American Mathematical Society, Providence (2010) · Zbl 1216.53057
[9] Ge, H., Lin, A., Shen, L.-M.: The Kähler-Ricci flow on pseudoconvex domain. arXiv:1803.07761 · Zbl 1472.53105
[10] Giesen, G., Topping, P.-M.: Ricci flow of negatively curved incomplete surfaces. Calc. Var. PDE 38, 357-367 (2010) · Zbl 1244.53076 · doi:10.1007/s00526-009-0290-x
[11] Giesen, G., Topping, P.-M.: Existence of Ricci flows of incomplete surfaces. Commun. Partial Differ. Equ. 36, 1860-1880 (2011) · Zbl 1233.35123 · doi:10.1080/03605302.2011.558555
[12] Giesen, G., Topping, P.-M.: Ricci flows with unbounded curvature. Math. Zeit. 273, 449-460 (2013) · Zbl 1258.53071 · doi:10.1007/s00209-012-1014-z
[13] Gill, M.: Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277-303 (2011) · Zbl 1251.32035 · doi:10.4310/CAG.2011.v19.n2.a2
[14] He, F., Lee, M.-C.: Weakly PIC1 manifolds with maximal volume growth. arXiv:1811.03318 · Zbl 1482.53123
[15] Huang, S.-C.: A note on existence of exhaustion functions and its applications. J. Geom. Anal. 29(2), 1649-1659 (2019) · Zbl 1416.53037 · doi:10.1007/s12220-018-0055-x
[16] Huang, S.-C., Lee, M.-C., Tam L.-F., Tong, F.: Longtime existence of Kähler-Ricci flow and holomorphic sectional curvature. arXiv:1805.12328 · Zbl 1520.53087
[17] Lee, M.-C.; Tam, L.-F.: Chern-Ricci flows on noncompact manifolds. To appear in J. Differ. Geom. arXiv:1708.00141 · Zbl 1469.32017
[18] Lott, J., Zhang, Z.: Ricci flow on quasi-projective manifolds. Duke Math. J. 156(1), 87-123 (2011) · Zbl 1248.53050 · doi:10.1215/00127094-2010-067
[19] Ni, L., Tam, L.-F.: Poincarè-Lelong equation via the Hodge-Laplace heat equation. Compos. Math. 149(11), 1856-1870 (2013) · Zbl 1286.53048 · doi:10.1112/S0010437X12000322
[20] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159 · Zbl 1130.53001
[21] Sherman, M., Weinkove, B.: Interior derivative estimates for the Kähler-Ricci flow. Pac. J. Math. 257(2), 491-501 (2012) · Zbl 1262.53056 · doi:10.2140/pjm.2012.257.491
[22] Sherman, M., Weinkove, B.: Local Calabi and curvature estimates for the Chern-Ricci flow. N. Y. J. Math. 19, 565-582 (2013) · Zbl 1281.53069
[23] Shi, W.-X.: Ricci deformation of the metric on complete Riemannian manifolds. J. Differ. Geom. 30, 303-394 (1989) · Zbl 0686.53037 · doi:10.4310/jdg/1214443595
[24] Shi, W.-X.: Ricci flow and the uniformization on complete noncompact Kähler manifolds. J. Differ. Geom. 45, 94-220 (1997) · Zbl 0954.53043 · doi:10.4310/jdg/1214459756
[25] Song, J., Tian, G.: The Kähler-Ricci flow through singularities. Invent. Math. 207(2), 519-595 (2017) · Zbl 1440.53116 · doi:10.1007/s00222-016-0674-4
[26] Tam, L.-F.: Exhaustion functions on complete manifolds, recent advances in geometric analysis. Adv. Lect. Math. (ALM) 11, 211-215 (2010) · Zbl 1198.53040
[27] Tian, G., Zhang, Z.: On the Kähler-Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179192 (2006) · Zbl 1102.53047
[28] Tô, T.-D.: Regularizing properties of complex Monge-Ampère flows II: Hermitian manifolds. Math. Ann. 372(1-2), 699-741 (2018) · Zbl 1401.53064 · doi:10.1007/s00208-017-1574-7
[29] Topping, P.-M.: Ricci flow compactness via pseudolocality, and flows with incomplete initial metrics. J. Eur. Math. Soc. (JEMS) 12, 1429-1451 (2010) · Zbl 1202.53067 · doi:10.4171/JEMS/237
[30] Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern-Ricci form. J. Differ. Geom. 99(1), 125-163 (2015) · Zbl 1317.53092 · doi:10.4310/jdg/1418345539
[31] Yau, S.-T.: A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100(1), 197-203 (1978) · Zbl 0424.53040 · doi:10.2307/2373880
[32] Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31(3), 339-411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.