×

Tensor and its Tucker core: the invariance relationships. (English) Zbl 1424.15047

This paper considers several interesting questions concerning the relation of the Tucker tensor and its core tensor. These relations are important from the computational point of view since the size of Tucker core is usually much smaller than the size of the target tensor.

MSC:

15A69 Multilinear algebra, tensor calculus
15A18 Eigenvalues, singular values, and eigenvectors

Software:

Matlab

References:

[1] WangH, AhujaN. Compact representation of multidimensional data using tensor rank‐one decomposition. Int Conf Pattern Recognit. 2014;1:44-47.
[2] CarrollJD, ChangJJ. Analysis of individual differences in multidimensional scaling via an n‐way generalization of “eckart‐young” decomposition. Psychometrika. 1970;35:283-319. · Zbl 0202.19101
[3] HarshmanRA. Foundations of the parafac procedure: Models and conditions for an “explanatory” multi‐modal factor analysis. UCLA Working Paper; 1969.
[4] GhoshA, TsigaridasE, DescoteauxM, ComonP, MourrainB, DericheR. A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the orientation distribution function in diffusion MRI. 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI); 2008; New York. p. 237-248.
[5] BloyL, VermaR. On computing the underlying fiber directions from the diffusion orientation distribution function. International Conference on Medical Image Computing and Computer‐assisted Intervention‐part I; 2008; New York. p. 1-8.
[6] QiL, YuG, WuEX. Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci. 2010;3(3):416-433. · Zbl 1197.92032
[7] HillingJJ, SudberyA. The geometric measure of multipartite entanglement and the singular values of a hypermatrix. J Math Phys. 2010;51(7):165-169. · Zbl 1311.81026
[8] KhoromskijBN. Structured rank‐(r_1,⋯,r_d) decomposition of function‐related tensors in \(\mathbb{R}^d\). Comput Methods Appl Math. 2006;6:194-220. · Zbl 1120.65052
[9] KhoromskaiaV. Numerical solution of the Hartree‐Fock equation by multilevel tensor‐structured methods. PhD thesis, TU Berlin, 2010.
[10] KoldaTG, BaderBW. Tensor decompositions and applications. SIAM Rev. 2009;51(3):455-500. · Zbl 1173.65029
[11] KhoromskijBN. Tensor numerical methods for multidimensional PDEs: Theoretical analysis and initial applications. ESAIM: Proc Surv. 2015;48:1-28. · Zbl 1382.65461
[12] HillarCJ, LimL‐H. Most tensor problems are NP‐hard. Journal of the ACM. 2013;60(6):Art. 45, 39. · Zbl 1281.68126
[13] CuiC, DaiY, NieJ. All real eigenvalues of symmetric tensors. SIAM J Matrix Anal Appl. 2014;35:1582-1601. · Zbl 1312.65053
[14] De LathauwerL, De MoorB, VandewalleJ. A multilinear singular value decomposition. SIAM J Matrix Anal Appl. 2000;21(4):1253-1278. · Zbl 0962.15005
[15] De LathauwerL, De MoorB, VandewalleJ. On the best rank‐1 and rank‐(r_1,r_2,⋯,r_n) approximation of higher‐order tensors. SIAM J Matrix Anal Appl. 2000;21(4):1324-1342. · Zbl 0958.15026
[16] BroR, AnderssonCA. Improving the speed of multiway algorithms: Part II: Compression. Chemom Intell Lab Syst. 1998;42:105-113.
[17] QiL. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput. 2005;40:1302-1324. · Zbl 1125.15014
[18] LimL‐H. Singular values and eigenvalues of tensors: A variational approach. 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005; Puerto Vallarta, Mexico. p.129-132.
[19] YuanM, ZhangC‐H. On tensor completion via nuclear norm minimization. Found Comput Math. 2016;16(4):1-38.
[20] BaderBW, KoldaTG. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans Math Software. 2006;32:635-653. · Zbl 1230.65054
[21] KoldaTG, GibsonT. Multilinear Operators for Higher‐Order Decompositions. Technical report: Sandia National Laboratories; 2006.
[22] TuckerLR. Some mathematical notes on three‐mode factor analysis. Psychometrika. 1966;31:279-311.
[23] KhoromskijBN, KhoromskaiaV. Low rank Tucker‐type tensor approximation to classical potentials. Cent Eur J Math. 2007;5:523-550. · Zbl 1130.65060
[24] TomasiG, BroR. A comparison of algorithms for fitting the PARAFAC model. Comput Stat Data Anal. 2006;50:1700-1734. · Zbl 1445.62136
[25] CarrollJD, PruzanskyS, KruskalJB. Candelinc: A general approach to multidimensional analysis of many‐way arrays with linear constraints on parameters. Psychometrika. 1980;45:3-24. · Zbl 0478.62050
[26] ComonP, GolubG, LimLH, MourrainB. Symmetric tensors and symmetric tensor rank. SIAM J Matrix Anal Appl. 2008;30(3):1254-1279. · Zbl 1181.15014
[27] JiS, SzeK‐F, ZhouZ, SoAM‐C, YeY. Beyond convex relaxation: A polynomial‐time non‐convex optimization approach to network localization. Proceedings of the 32nd IEEE International Conference on Computer Communications (INFOCOM 2013); 2013; Turin, Italy, 2499-2507.
[28] GröthendieckA. Produits tensoriels topologiques et espaces nucléaires. Mem Am Math Soc. 1955;16:140. · Zbl 0064.35501
[29] SchattenR. A Theory of Cross‐Spaces. NJ: Princeton University Press; 1950. · Zbl 0041.43502
[30] FriedlandS, LimL‐H. Nuclear norm of higher‐order tensors. Math Comput. 2016. to appear.
[31] BiniD. The role of tensor rank in the complexity analysis of bilinear forms. ICIAM07. Switzerland: Zürich; 2007.
[32] JiangB, LiZ, ZhangS. On cones of nonnegative quartic forms. Found Comput Math. 2017;17(1):161-197. · Zbl 1367.15043
[33] QiL, DaiH‐H, HanD. Conditions for strong ellipticity and M‐eigenvalues. Front Math China. 2009;4:349-364. · Zbl 1233.74004
[34] HuS. Relations of the nuclear norms of a tensor and its matrix flattenings. Linear Algebra Appl. 2015;478:188-199. · Zbl 1312.15027
[35] LandsbergJM. Tensors: Geometry and applications. In: Graduate Studies in Mathematics, vol. 128. Texas A&M University: AMS; 2012. · Zbl 1238.15013
[36] NieJ. Generating polynomials and symmetric tensor decompositions. Found Comput Math. 2015. doi:10.1007/s10208‐015‐9291‐7. · Zbl 1381.15017
[37] NieJ, WangL. Semidefinite relaxations for best rank‐1 tensor approximations. SIAM J Matrix Anal Appl. 2014;35:1155-1179. · Zbl 1305.65134
[38] SorberL, Van BarelM, De LathauwerL. Numerical solution of bivariate and polyanalytic polynomial systems. SIAM J Numer Anal. 2014;52(4):1551-1572. · Zbl 1302.65135
[39] QiL, WangF, WangY. Z‐eigenvalue methods for a global polynomial optimization problem. Math Program. 2009;118:301-316. · Zbl 1169.90022
[40] JiangB, MaS, ZhangS. Tensor principal component analysis via convex optimization. Math Program. 2015;150:423-457. · Zbl 1312.65008
[41] XieJ, ChangA. On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph. Numer Linear Algebra Appl. 2013;20(6):1030-1045. · Zbl 1313.05276
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.